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Abstract

ALLOCATIVE MECHANISMS AND INFORMATION EXCHANGE IN TASK PROCESSING

AND INTERACTIVE NETWORKS

This thesis investigates analysis techniques and mechanisms for exchanging and valuating re-

sources and information in a task processing network of elements (TNE) and interactive social

networks. For a federated TNE, a trusted auctioneer uses a mechanism to allocate resources

to computational tasks and suggests prices for exchanging resources across a federation. An

operational mechanism allocates processing, storage and communication resources to computa-

tional demands. This model finds an efficient solution to combinatorial routing with technical and

financial constraints. Using mixed-integer linear programming (MILP) formulation, the operational

model finds an optimal solution to processing tasks, allocating links, storing and delivering data

to destinations. The auctioneer assumes a federation of self-centric and rational strategic partici-

pants/bidders/federates and simulation results show improvement in collective and expected values

for participants in the proposed mechanism. For auction design in a federated TNE, this research

investigates an auctioneer equipped with algorithms to drive behavior of decentralized components

towards higher collective-efficient metrics in a combinatorial resource allocation. This work for-

mulates five sealed-bid auction-based algorithms for exchanging resources in multi-hop and multi-

source network routing and task scheduling: 1) linear program with binary search for prices, 2)

first-price double-bid reverse auction, 3) non-linear searching for prices, 4) online algorithm with
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closed-form solution for prices, and 5) virtual pricing with closed-form solution for prices. Collective

metrics for numerical validation include normalized bids and prices, an additive value function, and

convergence rates for algorithms. Extensive simulation runs using hundreds of network topologies

with different configurations of elements and federates show better computational performance and

higher economic efficiency for the online algorithm with a closed-form and variation-reducing so-

lution for prices (No. 4). This thesis also investigates incentivizing mechanisms for information

exchange in interactive social networks. A user classification model and a clustering model are

proposed for a micro-level model interactive behavior of users and a macro-level model of circulat-

ing viral content and discourse in a social network. Analysis investigates the nature of influence and

interactions on social networks. A data-driven approach distinguishes endogenous and exogenous

influences and statistical analysis confirms the effect of influence on emergence of viral content on

Twitter. The clustering metrics include popularity, burstiness, relevance score, consolidation, and

hierarchal and temporal similarities. Conclusions outline future work to capture behavioral metrics

of users on evolution of content and discourse in the interactive social networks.

Abbas Ehsanfar

Advisors: Paul T. Grogan, Mo Mansouri

Date: October 4 2018

Department: Systems and Software Division, SSE

Degree: Doctor of Philosophy
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Chapter 1

Introduction

Mechanisms for exchanging resources and information in interactive and collaborative systems

with decentralized components and driving collective performance of these systems towards a

collective goal such as social welfare, reducing cost, and maximizing utility using incentivizing

schemes has gained research attention in recent years. Allocative and auction mechanisms for

distributed/federated systems and information sharing mechanisms in interactive social systems

can drive the collective behavior of a system-of-systems towards pre-defined collective metrics.

Resource allocation in distributed systems aggregates scalable resources with interdependency,

heterogeneity, and interactions among distributed entities [1]. This may include aggregating, allo-

cating, economic, and social/legal mechanisms in a cloud of distributed entities and computational

elements. For instance, an auction-based mechanism can improve a collective metric such as

social welfare or algorithmic run-time with minimum sharing of private information among interac-

tive entities. In interactive social systems, incentivizing mechanism can result in better collective

performance such as dis-incentivizing fake news and dominance of malicious bots in developing

discourse in social networks. A mechanism can affect the collective behavior of systems in a wide

range of applications such as cloud platforms, peer-to-peer networks, open-source communities,

distributed GPUs with blockchain technology, swarm of small satellites in space systems, and dom-

inance of malevolent agents in exchanging information on social systems.
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Allocation mechanisms on cloud systems enable end-users to access a product or service with

more features than what they could afford to own independently. Collaborative community (CC)

platforms enable peer-to-peer (P2P) access to resources through online services. The introduction

of P2P platforms enables a sharing economy where users can access unused capacity of other

participants. Cloud computing platforms enable end-users to access distributed resources such

as online processors and storage regardless of geographical distance, transportation networks

enables passengers to access a personal service with a comparable cost to public service, and an-

other sharing platform has already helped travelers when rates skyrocket in particular cities during

certain times [2]. Transportation and accommodation platforms are estimated to grow in market size

from $150 billion in 2016 to $500 billion in 2020 [3]. Airbnb and Uber, platforms for accommodation

and ride sharing with distributed resources and pricing mechanisms, are rated among the highest-

valued private companies by 2018 [4,5]. In space systems, the emergence of small satellites such

as CubeSat and FemtoSat will democratize space operations for regular users, researchers and

hobbyists using a cloud of small, inexpensive low-orbit constellations versus traditional complex

space systems with dedicated resources and pre-defined space missions [6]. Enumerating shar-

ing opportunities extends to crowd funding/lending (e.g. gofundme and kickstarter ), online staffing

(e.g. taskrabit and upwork ) , and music/video streaming [7].

Sharing resources among decentralized participants can be subject to unintended consequences

and negative externalities for an economy. An unregulated implementation of peer-to-peer resource

exchange can bring consequence and benefits to end users. The outlook of sharing mechanisms in

a sharing economy is comparable to introduction of unions to an industrial economy. Accordingly, in

a sharing economy, part of the market might gain unprecedented advantage over others and ignore

the long term externalities of profit-centric decisions regarding sharing resources. For instance, in

sharing economy, the price of sharing may betray traditional practices with respect to costs, service

quality, public externalities and long-term investment in resources and participants. While micro-
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outsourcing may pay for tasks at hand (because of low marginal cost) and create short-term access

to underpriced resources, it may result in fluctuations in price, resource shortage, lack of skills, and

reduced welfare (e.g. retirement and insurance) in long-term. For instance, in a ride sharing or ac-

commodating platform, matching a driver to a rider or a vacancy to a tenant enables a customer to

access an affordable riding and housing, but it can also create shortage of investment in affordable

housing and reliable ride sharing such as what exists in taxi and hotel industries. As it says “going

freelance is hollow freedom when the wage for labor is free” [8,9].

On the other hand, sharing resources can redefine trust in a networks with computational re-

sources. A blockchain is a series of blocks in chronological order which enables distributed par-

ticipants to keep track of transactions without centralized record keeping. This concept is based

on the third generation of enabling platforms with “computing anywhere, immediately, and among

shared communities and organizations” [10]. In blockchain technology, distributed miners add a

new chronological block to a group of transactions when enough validating nodes have consen-

sus on it. This is an inexpensive decentralized mechanism for verifying and tracking timestamp of

evens and transactions. Blockchain market is estimated to grow 48% a year to more than $6 billion

in 2023 [11]. Nonetheless, the indirect market of blockchain is growing disproportionately as market

capitalization of the world’s first decentralized cryptocurrency exceeded $150 billion by November

2017 [12]. The blockchain technology with security, immutability, transparency, and ability of P2P

connection among participants, has the potential to revolutionize industries in removing middleman

between buyers and sellers, verifying transactions in banking and financial industry, and tracking

ownership and timestamp of transactions on diamonds, fine arts, land registration, etc.

A federation of systems (FoS) is a framework for sharing distributed resources among active

participants, authorities and owners. This concept was introduced to aggregate and share re-

sources among distributed systems under a common mechanism. Similar to “system-of-systems”

or “collaborative system”, a federated system or federation includes a cyber-physical standard and
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language among collaborative entities/federates [13]. A federated system is based on operational

and managerial independence of systems and relies on an extendible and nonexclusive core that

incentivizes participants/federates toward an adaptive and collective goal while holding its own

structure against adversarial and selfish behavior by endogenous and exogenous systems. A fed-

erated mechanism follows two goals in a distributed system: increasing collective capacity and

robustness. Collaboration and participation in a federation is a rational decision by owners under

a federated mechanism for sharing resources. In other words, collaboration in a federation is not a

priori but a posteriori [14]. Today, this domain of federated systems extends to cloud systems, low

earth orbit (LEO) satellites, swarms of drones and unmanned aviation, robotic emergency teams,

etc. [15–19].

Federated satellite systems (FSS) introduce a decentralized space architectures for sharing

space resources such as processing, storage, inter-satellite communication, downlink bandwidth,

and instrument time among distributed space systems. In FSS, the federates have managerial,

operational and goal independence to cooperate and share resources under an agreement [20].

Implementation of FSS benefits the participants of space missions in three respects: 1) improved

economics of capacity utilization for resource owners, 2) accessibility of space missions to larger

pool of users by removing financial barriers, and 3) more efficient resource allocation by collabo-

rative design elements, for instance, by supplementing expensive dedicated downlink for less ex-

pensive inter-satellite relay. The ubiquity of networked resources in combination with the technical

concept of virtual satellite missions (VSM) and collaborative framework of FSS can revolutionize

the accessibility and economics of space resources for commercial and scientific purposes [15,21].

In FoS, pricing resources is achieved through individual objectives by each federate. However,

a pricing mechanism for inter-federate resources can incentivize federates to achieve higher indi-

vidual and collective value. Discrepancy in valuation of resources among federates encourages

act of malicious pricing and manipulative behavior by owners or users. In economics, externalities
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affect welfare and is a reason for a policy, regulation, or intervention in market, e.g. construction in

cities, polluting industries, IT infrastructure. In a more abstract sense, a pricing mechanism reduces

the potential need for market intervention by introducing a self-regulating system that adapts and

responds to inputs by participants. In the ride and accommodation-sharing industries, a centralized

matching mechanism can introduce a universal governing role in granting licenses to drivers, bal-

ancing demand and supply without intervening hands of local authorities. Eventually, an advanced

pricing and auction mechanism can target the collective benefit for all participants and decompose

a collective utility into distributed objectives without the cost of centralized planning and allocation.

A task-processing network of elements (TNE) is a model of computational resources in net-

worked structures such as clouds, satellite, robotic teams or blockchain. A federated network is a

federation with networked elements, computational resource owners and resource users with the

possibility of interdependency among federates in terms of resource and information exchange [22].

In an element network with multiple federates, a value-maximizing approach without an operational

and financial agreement among federates doesn’t give a viable solution to resource allocation.

Nonetheless, a decentralized approach executed by non-collaborative federates results in sub-

optimal solutions. In other words, independent operations by federates (e.g. a platform of clouds

or a constellation of satellites) is not efficient while a centralized solution is not feasible given the

distributed control and (potentially) design over resources by decentralized authorities. In addition,

a possible combinatorics of resource exchanges among tasks and resource owners calls for an

efficient and effective mechanism for financial agreement and allocation using on-board resources.

A targeted operational solution with exchanges among federates fits between a value-maximizing

centralized operation and a solution with independent designs/operations. In this thesis, an opera-

tional model allocates resources in scheduling computational tasks and routing data to destinations

using elements from systems with decentralized designs/operations. An agreement for allocating

resources and inter-federate financial exchanges is a subject of auction-based mechanisms in a
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federated network. Accordingly, a potential mechanism shall consider decentralized/federated ob-

jectives, economic efficiency, adversarial security, bidding language and computational complexity

within a federation.

Information flow in social networks is another example of collective result of micro-level behavior

by interactive contributors. Similar to auction mechanisms, incentivizing mechanisms can affect the

collective behavior of interactive agents toward a better collective metric such as dissemination of

useful/truthful information across a network. Accordingly, the next section of this thesis is dedicated

to statistical models for understanding micro-level behavior by users and macro-level model of circu-

lating content in a social network. Finally, this thesis investigates how information exchange among

members in interactive networks can incentivize members to participate (i.e. invest resources and

time) in developing and distributing content.

Among other interactive social networks, Twitter offers a platform for expressing opinion, in-

vesting time, sharing resources, and circulating content by users. In particular, a user have the

chance to tweet (express her opinion), retweet (republish a content for her followers), quote (ex-

press her opinion along with a quote by another user), and reply (leave comment on another’s

content). These micro-actions developed by platforms such as Twitter or Sina Weibo create a new

type of communication called microblogs that allow exchange of links, images, and brief sentences

and topics over a network [23, 24]. In this platforms, topics range from daily life to current events,

news stories, and personal interests [25] where an individual user can simultaneously consume

and produce content (see [26]). Nonetheless, limitations on producing content, e.g. on the num-

ber of characters, have incentivized contributors to use an existing language differently by applying

minimal grammar, frequent abbreviations, and conciseness to it. An example of these linguistic

tools was the introduction of hashtags to twitter in 2007 [27]. These linguistics nuances in addition

to recent discoveries on spreading malicious information and accounts through using a popular

language by foreign agents and bots call for more inclusive methods in the analysis of linguistic
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discourse in a social network [28–30].

In this thesis, models of resource sharing and information exchange in TNEs and interactive

networks are introduced: 1) a trusted third-party auctioneer for allocating and pricing networked

resources in a federated system, 2) a general mixed-integer linear program model of allocating

and scheduling network resources across a federation, 3) one-sided and two-sided auction-based

mechanisms for combinatorial resource allocation in networks, and 4) a statistical model for un-

derstanding influence and content models in interactive networks. In developing an allocative

mechanism, the computational challenges involve solving combinatorial routing problems based

on bidding preferences by resource owners and users and pricing resources based on those con-

straints and alternative solutions. Accordingly, in this work, a linear program auction with binary

search (LPA), first-price auction (FPA), sequential least-square algorithm (SLA), online algorithm

with closed-form prices (ONA), and a virtual pricing for multi-path solutions (VPA) are formulated

and implemented in a simulation study. Finally, in interactive networks, a classification technique

for analyzing user behavior, a content model for detecting viral topics, and a statistical model for

analyzing relation among user classes and content clusters are introduced.

Chapter 2 discusses related works in allocating and pricing mechanisms, federated systems,

auction-based algorithms, and interactive models in social networks. Ch. 3 introduces assump-

tions, notations and a linear program for operational model of routing and task scheduling in net-

works with technical and financial constraints. Ch. 4 formulates and illustrates five auction-based

algorithms for exchanging resources in a network. Ch. 5 discusses a framework for analysis of

information exchange and interaction in a social networks and Ch. 6 discusses contributions in

pricing, auction-based and interactive models, compares those to existing works in literature, and

enumerates possible extensions to this thesis in future works.
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Chapter 2

Literature Review, Problem Statement, and Questions

Resource allocation and scheduling (RAS) is widely applied to cloud systems, wireless sensor net-

works, ad-hoc networks, cellular networks, space systems, and blockchain [15, 20, 31–34]. Cloud

systems provide scalable, automated, and instantaneous access to online software and hardware

resources. In a wireless sensor and ad-hoc networks, RAS solutions allocate relaying nodes and

communication bandwidth including centralized and distributed routing mechanisms, finding short-

est path, optimizing energy cost, and allocating ad-hoc resource and cost to ensure quality of

service in broadcasting and communication services. In commercial space systems and constella-

tions of satellites, sharing mechanisms target unused resources to maximize economic efficiency

and collective utility of stakeholders and end-users as was the case with cloud platforms. In a

blockchain, an auto-executing mechanism enables distributed resources to achieve consensus,

validate transactions, create trust among decentralized entities, and increase economic efficiency

by eliminating middle brokers and central authorities.

Section 2.1 discusses distributed systems of clouds, blockchain etc. Sec.2.2 reviews allocative

mechanisms in networks such as scheduling tasks, finding shortest paths, and allocating cost.

Sec. 2.3 explores literature for pricing and auction mechanisms e.g. combinatorial auctions, pricing

path bundles, and dynamic algorithms. Sec. 2.4 introduces resource allocation and mechanism

design to federated cloud systems, FSS, and reviews multiple auction-based algorithms. Sec. 2.5
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reviews some interactive mechanisms for analyzing collective behavior of interactive participants

toward a social benefit in networks. Finally, Sec. 2.6 addresses research problems and gaps in

literature and states my research questions and methodology during this thesis.

2.1 Distributed Systems

In cloud computing systems, multiple platforms can collaborate through an inter-federated resource

sharing mechanism. In multi-owner supplier and customer networks, a federated cloud is an appli-

cable concept to achieve higher collective value for a federation of systems (i.e. cloud providers),

fairness and stability for participants (owners), and scalable capacity for end-users. For a cloud

provider, a federated cloud platform provides instant access to computational demands over its un-

used resources and vice versa [35]. In practice, cloud systems may still experience low utilization

rates of 20-30% mostly because of dedicated resources to end-users with inaccurate estimation

of demand and performance due to heterogeneity of systems, demand spikes, etc. [36]. Multiple

methods are developed to address resource utilization in cloud systems including virtualization,

task consolidation, Quality of Service (QoS) aware interfaces, federated clouds etc. [36–39].

In commercial space constellations, stakeholders seek efficient use of space resources by mini-

mizing unused resources and maximizing system capacity similar to cloud platforms. The paradigm

of distributed system design versus traditional monolithic design reduces initial cost of space sys-

tems using a dynamic network of inexpensive and modular units with lower level of complexity

and redundancy in design [15]. Accordingly, researchers, environmentalists, startups, etc. have

access to virtual, inexpensive, instant space resources for their computational demands using real-

time smart auctions and contracts. Blockchain technology is a potential solution for e-auctions and

instant contracts in networks for inter-federate resource sharing and pricing [40–42].

A centralized solution (CS) is referred to the optimum RAS in a system of distributed resources.

However, this solution has two issues: scalability for problems with higher complexity and applicabil-



www.manaraa.com

10

ity to distributed authorities with decentralize missions and objective functions. First, the centralized

optimization limits scalability of CS in finding solutions for growing systems in resources and size.

For instance, a centralized LP formulation of multi-source combinatorial path finding problem is

NP-hard and exponential in time [43, 44]. In addition, a centralized mechanism cannot realistically

assume access to private information such as utility functions, available missions and resources

in a network with distributed owners and authorities. On the other hand, decentralized and in-

dependent solution (IS) with no resource exchange among components is drastically inefficient

for resource providers and end-users. Instead, scalable and dynamic mechanisms are developed

for agreement and exchanging resources among decentralized entities. These algorithms include

dynamic algorithms, consensus-based algorithms, federated mechanisms, etc. [45–47].

A federation of systems (FoS) intends to enhance the collective capacity and robustness across

distributed systems, reduce investment barrier for participants, and enable collaboration among

distributed systems with highly distributed level of authority, autonomy, and management. The FoS

was first introduced for the architecture of cloud computing platforms [48–50]. In a federation of

cloud computing systems, multiple platforms can collaborate through an inter-federate mechanism

for sharing and pricing resources. In multi-owner clouds and user networks, a mechanism can

offer higher collective value and stability to cloud providers and scalable computational capacity

to end-users [35, 51–53]. In space systems, a federated satellite systems (FSS) architecture com-

bines distributed systems with multiple stakeholders and decentralized designs. A distributed space

system can be modeled as a task processing network of elements (TNE) of satellites and ground

stations where computational missions are assigned to satellites and the resulting data are received

through inter-satellite and downlink communication [14,15,54,55].

A pricing mechanism is aimed to facilitate exchanging resources among federates with dis-

tributed resources, to increase fairness, stability, and social welfare in a network or federation. An

auction-based mechanism is an approach to discover resource valuations among multiple buyers
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and sellers in a network. In a TNE, a federate with financial incentive is a potential participant or bid-

der in an auction-based mechanism. An efficient auction mechanism can successfully decompose

a global objective across a FoS into local objectives for decentralized operation and decision mak-

ing by participants with local and private information. Mechanism design for exchanging resources

in a network has recently attained interest from different communities.

2.2 Resource Allocation

The scope of this section is resource allocation in networked systems such as cloud systems, satel-

lite constellations, computational task assignment, wireless communication networks, blockchain,

etc. In federated cloud systems, a federate assigns tasks to virtual machines and allocates com-

munication and storage resources to computational demands. In a satellite system, an algorithm

allocates space resources such as storage, bandwidth, communication channel, downlink, etc. to

computational tasks. For instance, an allocation mechanism finds the shortest path from a satellite

to ground stations for delivering a processed data. In communication networks, routing algorithms

are developed to find optimal bandwidth-constrained paths to destination(s), minimize time and

space complexity of solutions and ensure quality of service (QoS) [56]. In a TNE, such as a robotic

team, decentralized algorithms for scheduling tasks are developed with spatial and temporal con-

straints to maximize social welfare from processing tasks [57,58].

A game-theoretical approach can reduce time and space complexity of combinatorial problems

such as resource allocation on clouds, routing and bandwidth allocation. In economics and game

theory, Stackelberg is a strategic game where one player/leader moves first and other players follow.

In a multi-cast routing application, this model reduces the complexity of the problem in time when a

leading source optimizes a solution followed by other sources [59–61]. A collaborative mechanism

in a network is aimed at maximizing a collective value or utility, called social welfare. An aggregated

utility can be distributed or translated to individual ones using models such as Shapley, Banzhaf,
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nucleolus function, proportional distribution, etc. to ensure stability and fairness for participants [62–

64]. In most networks, an allocation mechanism assumes a central agent and individual utility

functions known to the agent and the economically-efficient mechanism maximizes social welfare.

An effective cost allocation mechanism ensures willing participation by all users, namely core of

coalition game with all players. The existence of a core is not granted and depends on the prop-

erties of a coalition’s value function in terms of super additivity and convexity. Existence of a core

ensures the existence of a coalition, however, due to other desirable parameters such as fairness,

Shapley and Banzhaf indices are introduced to measure relative effect of each agent in the grand

coalition [65–67]. Heuristic methods are studied to reduce the computational cost of finding these

indices. One method finds top influential nodes in a network and uses sampled set of permutations

solvable in polynomial time. Other methods estimate the Shapley index using marginal or pro-

portional contribution by a player [68, 69]. The results for Shapley value and proportional sharing

are compared based on customer size, resource size, and the convexity of characteristic function

in [35]. In a more complex method, a dynamic nucleolus function maximizes the minimum gain in a

coalition [70]. For instance, a satisfactory core ensures the value from a coalition is higher than the

value from leaving the coalition.

2.3 Mechanism Design

Auction design is the least intrusive solution for allocating resources and payoff among partici-

pants because it doesn’t assume known utility functions and a priori private information. An auction

mechanism includes a form of submission by participants, outcome evaluation, and winner selec-

tion. A collective value or social welfare reflects a utility for a group of participants (if definable). A

participant’s utility can be defined as the difference between valuation and clearing price for a win-

ner (buyer or seller) [71]. A mechanism is designed to: allocate resources efficiently to maximize

value for winners, maximize revenue for the auction designer, decrease participation cost for bidder
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and bid-taker (e.g. overhead communication or auction time), and ensure incentivizing metrics for

participants, e.g. fairness [72]. An efficient auction is defined by being incentive compatible, indi-

vidual rational and Pareto-optimal [73]. In an efficient auction, a resource is shared by the willing

seller with least valuation for that resource and allocated to the willing buyer with most valuation for

it [74,75].

Auction-based pricing mechanisms are applicable to problems in cloud computing, task assign-

ment, bandwidth allocation, satellite systems, etc. [76–80]. Auctions are introduced to RAS and

bandwidth allocation in device-to-device communication, wireless sensor, cellular, and wireless

mesh networks [71,81–83], scheduling resources in distributed systems [18,77], sharing cloud re-

sources [84], satellite systems [85], and robot exploration of spatial targets [86]. In crowdsourcing,

employing a biased contest-based pricing mechanism incentivizes heterogeneous crowd-workers

in a social networks to execute micro-tasks [87]. In cloud manufacturing, multiple algorithms are

investigated to compose multiple tasks among cloud services [88]. In networked systems such as

cloud and wireless networks, auctions are designed to reflect the preferences of heterogeneous

participants, achieve an auctioneer-level goal and discourage users from adversarial behavior [84].

Combinatorial auctions are defined when bidders could place bids on multiple distinct items.

These auctions are applied to various problems such as resource scheduling, online advertise-

ment, network routing, telecommunication spectrum allocation, cloud systems, etc. [77–79, 89].

Some challenges in combinatorial auctions include: complexity of winner selection in time, evalu-

ating auction performance, bidding language, cooperation among participants, and communication

overhead [72]. A submission language must reduce the information overhead and auction time and

winner selection must be efficient and transparent to achieve a bidder’s trust in a mechanism.

Auction mechanisms applicable to combinatorial items include single-round sealed-bid auction

(e.g. first-price or reverse-price), Vickery-Clarke-Groves (VCG) mechanisms, market-clearing price,

and iterative auctions [71]. Accordingly, in a single round sealed-bid auction, the bids are collected
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before a deadline and a revenue maximizing mechanism allocates resources and determines win-

ners. In sealed-bid reverse auctions, sellers compete for buyers and in double auctions both sell-

ers and buyers bid simultaneously. Lazar introduced progressive second price auction (PSP) to

achieve: a) minimum communication among users and b) minimum centralized computation by the

auctioneer. This mechanism consists of players that submit bids (quantity and price) and an auc-

tioneer that allocates resources and offers new prices to bidders. The intuition behind PSP pricing

and allocation mechanism is that a resource price should reflect the social opportunity cost of the

allocated quantity to other participants. With certain assumptions on demand elasticity such as con-

cave valuation or complete information, the allocation rule is stable (has ✏-Nash equilibrium) and the

players will be truthful in bidding on marginal valuation of resources (incentive-compatibility1) [83].

In an auction mechanism, adversarial behavior by participants or an auctioneer negatively af-

fects the functionality, efficiency and fairness of the auction. Nonetheless, an auctioneer shall

assume selfish participants that use private knowledge to achieve individual advantage through

a mechanism. A truthful auction incentivizes bidders to disclose their value function and behave

toward a global optimum for all participants. For instance, collusion is a potentially adversarial be-

havior by bidders in which colluding participants manipulate the auctioneer regarding their value

function. VCG is proved to be vulnerable to collusion affecting auction value [90]. In addition to

participants, an auctioneer (or seller) might manipulate auction winners with higher price or less

resources. A solution to an adversarial auctioneer involves encryption methods to submit bids and

announce allocated resources [91,92].

2.4 Federated Systems

The FoS intends to enhance the collective value and robustness across distributed systems, re-

duce investment barrier for participants, and enable collaboration among distributed systems with
1incentive compatibility means every player can achieve the best outcome by following its true preferences, i.e. are

rationally truthful in his action
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distributed level of authority, autonomy and management. Similar to a coalition game, the mech-

anism core exists when the resulting value for a federate is at least equal to its power, i.e., the

opportunity cost of staying in the federation [93]. Otherwise, the grand coalition is not stable and

federates shall form alternative coalitions. In [67], using the concept of coalition games, a mecha-

nism for dynamic federation formation includes two functions and their corresponding rules: merge,

and split. A merge happens when two or multiple federates prefer to merge and create a bigger

federation and achieve higher value and a split happens when some participants opt to split to

sub-federations.

In the context of a coalition game, assume N is the grand coalition (coalition of all players) and

S is a coalition of a subset of players, and V(S) shows the value of coalition S. For a cardinality

N = |N | of participants, the vector v = {v1, ...., vN} is value of a coalition for players. Then, the

game core defines the set of solutions that disincentives players from departing a coalition and

forming smaller ones [35] as:

C = {v :
X

vi = V(N ),
X

vi � V(S), 8S ✓ N}

A popular FoS architectures is a federated clouds. The National Institute of Standard and Tech-

nology (NIST) defines the cloud as “enabling ubiquitous, convenient, and on-demand access to

shared pool of configurable resources such as bandwidth, processor, storage, applications and

services” [94]. Cloud systems provide instant access to computational resources (hardware and

software) with scalability, energy optimization, increased monitoring, and automation in a dynamic

environment [48–50]. In a federated cloud architecture, an allocative mechanism facilitates insourc-

ing and outsourcing services among cloud providers and end-users. These concepts denote the

inter-federate direction of computational requests: task inflow and task outflow respectively. RAS in

this context involves maximizing utility for end-users or revenue for cloud providers. In a federated
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cloud architecture, a provider can receive computational demands from end-users (demand) and

other providers (insourcing) or submit computational requests to other cloud providers (outsourc-

ing). Then, exchanging resources among providers is enabled but not assumed as a priori and a

global function defines a global utility. For instance, the global utility function may reflect a higher

value than sum of utilities by federates [35]. Federated satellite system (FSS) is an architecture in

space domain. FSS is distinct from constellations and swarms of homogeneous satellites and is de-

signed for collaborative missions and distributed operations by assuming interdependence among

heterogenous space systems, constellations, and federates. In literature, FSS is associated with

multiple research problems: 1) resource allocation in distributed systems, e.g. allocating downlink

bandwidth, storage, processors and sensors, finding shortest path and scheduling tasks. 2) design

compatibility among heterogenous systems and 3) economic agreement among stakeholders such

as pricing resources for inter-federate communication [14,15].

2.5 Information Exchange in Interactive Networks

Information exchange is critical for distributed components in an interactive platform. In the early

years of social networks, Jones et al. integrated social mechanisms with principles of transac-

tion cost economics (TCE) to discuss network governance as “mechanism for exchange” aimed at

adapting, coordinating, and safeguarding exchanges in a network [95]. In a US Patent, Bergh et al.

proposed using distributed user and content profiles for creating a collective social recommender

system [96]. For the first time, a decade after the invention of wireless networks and world wide

web, humans are able to communicate through many-to-many social platforms versus one-to-one

and one-to-many platforms, e.g. messengers and websites. In social networks, social interactions

and ties and individual characteristics and values are mutual and causal: “Analysis of interaction

patterns can identify structural holes in the network as well as cliques of densely connected sub-

groups, where distinct cultures and norms may flourish” [97].
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Multiple studies have explored models to understand the networked interdependencies among

social actors and communities in interactive networks [98–102]. A dynamic model of censorship be-

tween a ruler and an observer is introduced in [103] when the ruler controls the flow of information.

Weng et. al. in [104] argued that social structure and competition for limited user attention results in

popularity of different memes and broad diversity among them. By their model, the authors assume

no intrinsic appeal towards memes, and homogenous users with different audience size (influence)

when information is passed along a social structure with an epidemic nature. Influence maximiza-

tion is a well-known problem in social networks. Singer in [105] develops allocation and payment

mechanisms to elicit true information from users in social networks.

Similar to auction-based mechanisms, interactive and agent-based models of participants are

developed to investigate the effect of individual actions on collective behavior of participants. For

instance, an individual action driven by attitude, emotions, perception and sentiments can be as-

sociated with an emergent content in a social network [23, 106–108]. Temporal interactive models

can reveal and predict community structure and participating behavior of users [109] and to profile

users by behavioral characteristics including that of bots on social networks [110,111,111–114].

In this thesis, a topic or a discourse in social networks is “language as a practice” that is a

common term in critical discourse analysis (CDA) [115]. Accordingly, each topic has a distribution

of words and solely or in combination with other topics create a document (e.g. a tweet) in a

corpus [116]. Network models of users, topics, and documents have been employed to understand

the dynamics of community and content development in a social network [117]. In [118] and [119],

models of influential users and concepts are used to calculate the effectiveness of WikiProjects

in online content development and the structure of knowledge among computer science venues.

Network statistics such as centrality, closeness, betweenness, and entropy are employed to explain

interconnectedness of communities and concepts [120–122]. Analyzing online interaction among

users and developed topics in a network have given insight into development of applications such
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as discovering brand reputation and political orientation [123,124].

2.6 Problem Statement, Questions, and Methodology

This thesis studies mechanisms for resource and information exchange in federated and social

networks from system-of-systems perspective.

2.6.1 Problem Statement

In system-of-systems and collaborative systems with distributed components, economic-efficient

operation cannot be assumed a priori. Resource allocation in a network with decentralized decision-

making authorities and agents may result in a sub-optimal solution versus a solution by a centralized

planner. Equivalently, individual behavior of agents in a social structure can result in collective

behavior detrimental to the global utility of participants in a network. The goal in this thesis is to

propose allocative mechanisms to manage and control resource/information exchange in networks

in the following areas:

1. Develop and demonstrate allocative mechanisms for computational resources in networks

with technical and financial constraints by distributed components, particularly, in combinato-

rial problems of multi-task scheduling and multi-hop data routing.

2. Develop and demonstrate effective auction-based mechanisms for resource exchange among

decentralized and rational strategic participants/federates with multiple objective functions

considering economic efficiency, computational cost, algorithm’s runtime, and other collective

metrics.

3. Analyze and model micro-level behavior of users in terms of interactions and micro-level out-

put of networks in terms of discourse and content. Then explore the feasibility of learning

an interactive model that raise the collective performance of networked systems with a so-
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cial structure and interactive components, e.g. reducing propagation of untruthful content or

adversarial behaviors in a network.

2.6.2 Research Questions

Allocative mechanism can bring those components and entities under an allocative umbrella, and

financial agreement for exchanging resources. Real-world applications of sharing mechanisms in-

clude vehicles in transportation, unused space in temporary accommodation, bandwidth in cellular

networks, computational resources in cloud systems, imaging resources in a satellite constellation,

and sensors and spatial resources in robotic missions. A devised mechanism for sharing resources

in decentralized systems shall be extendible to encompass heterogenous components and scal-

able for systems with growing size and number of components. For instance, in the case a satellite

swarm, a mechanism shall consider heterogenous space system designs, distributed components,

multiple resource owners, and ever growing size of resources in near future.

In this thesis, first, a federated system is considered for a realistic representation of decentral-

ized space systems and a combinatorial problem of scheduling tasks and routing data is addressed

in a multi-source and multi-hop network. Decentralized components and entities, i.e. federates, en-

capsulate distributed resources and an auctioneer simulates a mechanism for allocating and pricing

resources. The first research question is:

1. How to formulate a pricing and allocative mechanism that incentivizes self-centric components

and improve the collective performance of a federated engineering systems? (Chapter 3)

For resource allocation in networked systems, an auction can achieve a higher value for partic-

ipants and a lower cost for the auctioneer using an individual rational, truthful, and Pareto-optimal

mechanism. In context of combinatorial auctions, an auction-based algorithm involves a language

for communication among bidders and the auctioneer (i.e. bidding and pricing), an operational
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model for winner selection, and a pricing model. In a federated topology of task processing ele-

ments, an auction-based algorithm can flexibly improve the collective metrics for participants and

the auctioneer:

2. How to formulate auction-based algorithms to incentivize inter-federate exchange of resources

and drive decentralized components toward better collective metrics such as higher value and

lower computational cost? (Chapter 4)

Exchange mechanisms among interactive participants can also affect multiple collective met-

rics in social networks. In recent years, two phenomena has driven multiple researches in these

networks: introducing bots as autonomous and influential agents in circulation of information and

producing content based on preferences by users to manipulate public opinion in social networks.

For instance, the circulation of fake news in recent years was assisted by the former bots and has

resulted in public consequences. In this thesis, the last research question is:

3. How can exchange mechanisms for human resources and information contribute to better

collective metrics in interactive and social networks? (Chapter 5)

2.6.3 Research Methodology

The research methodology in this thesis includes simulation study and mathematical models (and

proofs). For validating allocative model of scheduling tasks and routing in networks, an Orbital Fed-

erated Task Scheduling (OFTS) application is developed. The application creates a task processing

network of satellites with periodic topology for elements and an auctioneer that communicates with

federates at each time step, receives preferences, and find the economic-efficient solution to tech-

nical and financial constraints at each time step. This application validates the performance of an

allocative mechanism for exchanging resources in FSS. For the operational solution to schedul-

ing tasks and routing data, mathematical models provides insights and proofs for the mechanism’s
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performance.

A Federated Network Auction-based Routing (FNAR) application is also developed to simulate

and validate auction-based algorithms using in a federated network. The application creates a

network topology, communicates to federates for their bids and resources, solves MILP to find best

solution given in each time step (bids), and proposes prices for exchanging resources based on

five developed algorithms. The time-series and data-logs are separately stored and run for each

algorithm in a file system (object-oriented pickles in Python) and each federate is trained separately

for bidding in each algorithm. For the MILP model and algorithms, mathematical formulations are

proofs are provided.

For influence-based model in interactive social networks, a classification model of users and a

clustering model of topics and content are developed. A data-driven approach is used to validate

the results for the clustering model on Twitter (by tracking and comparing real-time news) and

an agent-based social systems (ABSS) simulation framework is proposed based on the statistical

observations on Twitter.
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Chapter 3

Mechanism Design in Federated Networks

This chapter introduces a mechanism for pricing and exchanging resources in federated task processing net-

work of elements (TNE). An operational model is developed to allocate processing, storage and communica-

tion resources to computational demands. This model finds an efficient and stable solution to combinatorial

routing and allocating resources among networked elements with technical constraints. Using mixed-integer

linear programming (MILP) formulation, I find optimal solution to processing tasks, allocating links, storing and

delivering data to destination. A trusted auctioneer uses a mechanism to allocate resources to computational

tasks and suggests prices for exchanging resources across a federation. The proposed mechanism maxi-

mizes the collective value for a federation and ensures an expected value for each federate. The auctioneer

doesn’t have access to utility functions and private information on resources a priori while assumes a federa-

tion with self-centric and rational participants. An application of federated satellite systems (FSS) is developed

with endogenous components such as adaptive bidding and opportunity cost of using resources. Numerical

results show that the proposed mechanism improves the collective and expected values in a federation with

strategic federates.

3.1 Introduction

Resource allocation and scheduling (RAS) in distributed systems with high scale of interdepen-

dency and heterogeneity necessitates allocative schemes with economic and social/legal mech-
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anisms for exchanging computational elements among providers [1]. The collective behavior of

decentralized systems is based on these mechanisms. Computational mechanisms cover a wide

range of applications in clouds, peer-to-peer platforms, open-source operating systems, blockchain,

space systems, and unmanned teams of autonomous or semi-autonomous vehicles and drones.

Cloud systems enable end-users to access software and hardware products or services that

they cannot otherwise afford to own or maintain. Collaborative community (CC) platforms, peer-to-

peer (P2P) systems, and sharing economy are introduced within access-based philosophy of using

and owning resources through online services. For instance, transportation and accommodation

platforms such as Airbnb and Uber, as applications of a sharing economy and highest-valued pri-

vate companies by 2018, are estimated to grow in market size from $85 billion in 2014 to $500

billion in 2020 [3–5]. As an another example, the emergence of small satellites such as CubeSat

and FemtoSat will revolutionize space operations for commercial users, researchers, and entertain-

ers by using small, inexpensive low-orbit constellations versus traditional complex space systems

with dedicated resources and pre-defined space mission [6].

For operation of a collaborative system of distributed resources and decentralized systems

with technical and financial constraints, a mechanism allocates resources to computational de-

mands/tasks. In this work, an operational run is a cycle of RAS and financial transactions in a

federated network. In a distributed system of computational elements with tasks, a solution to the

operational model combines decision variables for processing tasks, storing and transmitting data,

and resolving transactions. In this chapter, three approaches are used to propose an operational

model. First, a value-maximizing trusted third-party entity with knowledge of available resources

and demands. Second, a decentralized approach with multiple objective functions and a consen-

sus mechanism for avoiding and resolving conflicts among decision makers. Third, a distributed

operation of participants as independent and monolithic systems with dedicated resources to in-

ternal missions. In the first scheme, an optimizer aggregates shared resources, allocates them to
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tasks, and maximizes an assumed/defined global utility function for all participants. The second

approach is not explored in this research and a risk associated with the third approach is failure

of entities to deliver tasks which causes redundancy in components, unused capacity, and higher

design cost.

The other necessity for operating a distributed and collaborative system is a payment or pric-

ing mechanism for resource exchange among decentralized systems. A centralized and value-

maximizing payment mechanism needs further considerations in terms of stability and fairness. In

this regard, a federation of systems (FoS) is introduced for exchanging distributed resources among

active participants, authorities and owners. In a federation, distributed systems operate and share

their resources under a common mechanism to achieve higher operating capacity and greater mis-

sion robustness. In terms of operating capacity, the mechanism facilitates resource exchanges

maximizing marginal values for all participants. In addition, participation in a federated mechanism

is a rational decision by owners and is not implemented a priori, which can bring together larger

set of participants in real-world applications. On the other hand, exchanging resources with some

financial flexibility creates an operational redundancy in computational missions which means flex-

ibility for alternative solutions in case of resource failure. A federated system of task processing

elements with processing, storage and communication resources is called a federated network.

A federated system design is a solution between the two extreme cases, when centralized or

monolithic design is replaced by FoS with pricing mechanism for inter-federate resource sharing.

Resource sharing in a federated network can also be divided in two categories: sharing unused

capacity and pricing resources. In the first case, a federate dedicates its resources to internal

tasks and shares its unused capacity with other federates, keeping priority for internal missions vs

sharing (RAS by individual federates). In the second approach, federates contribute to federation

by pricing resources while a centralized operational mechanism allocates resources to maximize

utility functions across a federation. A more advanced case of the latter solution includes bidding for
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resources through an auction mechanism in the federation for pricing resources. Pricing resources

versus sharing unused capacity is a more inclusive approach to manage resources in a federation.

For individual federates, an intuitive reason for efficacy of a pricing mechanism is the opportunity

cost of sharing internal resources. In other words, aggregated cost of internal resources is reflected

in the solution to operational model. Any pricing mechanism that covers and exceeds this cost

can increase the federation value for a federate. However, pricing resources are trickier for each

federate as it must calculate the opportunity cost of using them, which needs information on the

available resources.

Federated satellite systems (FSS) introduce decentralized space architectures for sharing space

resources such as processing and storage, inter-satellite and downlink communication, and instru-

ment time among distributed space systems. In FSS, the federates have managerial, operational

and goal independence to cooperate and share resources under a federated agreement [20]. Im-

plementation of FSS benefits the participants of space missions in three respects: 1) improved

economics of capacity utilization for resource owners, 2) greater accessibility of space missions

to larger pool of users by removing financial barriers, and 3) more efficient RAS by collaborative

design elements, for instance, by supplementing expensive dedicated downlink for less expensive

inter-satellite relay. The ubiquity of networked resources in combination with technical concept of

virtual satellite missions (VSM) and collaborative framework of FSS can revolutionize the accessi-

bility and economics of space resources for commercial and scientific purposes [15,21].

This chapter pursues research problems in scheduling and routing problems in networks with

multiple actors and utility functions because: first, an assumption about a central planner with ac-

cess to information on available resources and utility functions is unrealistic, second, independent

operation of multiple actors without sharing information and resources across a distributed sys-

tem results in an inefficient solution to RAS. For instance, in a transportation platform such as Uber,

although a centralized mechanism optimizes the operational model, the objective function is equiva-
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lent to maximum capacity utilization of resources for the platform owner rather than the participants.

On the other hand, independent operation of transportation services, drivers, and passengers re-

sults in the existing transportation networks with a higher cost and a number of inefficacies such as

idling time for drivers, waiting time for customers, and higher traffic for urban residents. For another

example, in wireless networks in a city, millions of devices with immense processing, data, and

communication capabilities are in hands of users with minimal capacity utilizations for each device.

Nonetheless, in existing cellular networks with no distinction between access and ownership of

computational resources and no central planner to allocate private and unused resources to other

users, capacity utilization remains extremely low and access to resources remains most costly. In

cloud systems, multiple cloud platforms propose computational services to users with an expected

cost of scheduling tasks or acquiring a computational resource. Nonetheless, capacity utilization

of resources is still low because no dynamic pricing mechanism for insourcing and outsourcing of

tasks exist among platforms and users solely rely on their expectation on computational resources

rather than existing practices.

In a network of tasks processing elements, e.g. satellite systems, the aforementioned problem

exists in allocating processing, communication, and storage resources across the network and

among decentralized entities. Then, assuming no centralized solution for scheduling tasks and

routing data in a network with multiple actors, independent operations and objective functions in

the network results in inefficient allocation of distributed resources, reduced capacity utilization,

and higher risk of operation for independent components. In the next section, I review existing

works in literature on allocative mechanisms in networks with decentralized actors and objective

functions, e.g. FoS, FSS, and federated cloud systems.

Sec. 3.2 discusses more detailed insight regarding literature on tasks scheduling and routing

mechanisms and enumerates detailed research questions. Sec. 3.3 introduces the mathematical

notations for structural, functional, and behavioral functions with binary decisions on processing
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tasks, task storage, link transmission, and task resolution. Sec. 3.4 formulates objective function

and operational mechanism for scheduling tasks and finding paths (routing). A mixed-integer linear

programming (MILP) model is applied to solve the combinatorial problem of routing in a network

(multi-source and multi-hop). Sec. 3.6 introduces components in the FSS model and Sec. 3.7

explains the simulation study and design. Finally, Sec. 3.8 discuss the numerical results, research

contributions, and conclusions from this chapter.

3.2 Literature and Questions

In an element network, such as cloud providers, space systems, and robotic team or task pro-

cessing, the collective value of network is driven by the value of processed tasks. In the general

problem of task assignment, the best matching of tasks and agents is demanded. An optimization

objective function maximizes the value of processed tasks with spatial and temporal constraints for

resource capacity, network topology and temporal parameters such as task expiration or discount

rate. A solution to such an objective function in task processing assignment is conflict-free when

no task is assigned to more than one agent. The general solution to this problem schedules tasks

for every agent. Nonetheless, in a general problem of task assignment with interdependent tasks,

a task value depends on ordered list of processed tasks by each agent (i.e. experience) where

the complexity of the problem is exponential in time as the number of decision variables increases

by task permutations. The task-assignment problem can be formulated using mixed integer linear

program (MILP) which can be NP-hard and computationally intractable. A hybrid approach of MILP

and constraint programming (CP ) relaxes the search space [47] and a decentralized auction mech-

anism can decompose the objective function among distributed agents and reduce complexity of

centralized problem [125, 126]. A centralized auction mechanism is useful for tightly coupled task

processing agents (i.e. high connectivity) [126].

In a cloud federation, a centralized solution (CS) maximizes a global utility objective function
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by scheduling tasks and allocating onboard resources, insourcing and outsourcing to tasks [54,55,

127–129]. In a federated solution (FS), a mechanism proposes inter-federate pricing and resource

allocation that satisfies local objective functions or constraints. For instance, a dynamic pricing

model is proposed for insourcing, outsourcing, and end-user requests. For a cloud provider, the

schematic objective function for a pricing mechanism is [130]:

max
{pi,po,pe}

Vi = service value� outsourcing cost + insourcing value� service cost (3.1)

where Vi is the value of federate i, pi, po, and pe are resource prices for insourcing, outsourcing

and end-user, service value is financial value of cloud service for end-users, outsourcing is bought

service from other federates, insourcing value is the value of provided service to other providers,

and service cost is combined cost of all computational tasks performed by a federate: end-users

plus insourcing minus outsourcing.

Routing and scheduling algorithms in multi-hop and multi-source networks are studied in [43,

56, 131–133]. A QoS-aware algorithm for broadcasting (finding shortest paths) in a communica-

tion network may consist of bandwidth calculation, time slot reservation, rerouting, and QoS path

construction [56]. A network may consist of ad-hoc links (e.g. internet of things) and a solution

may use centralized, distributed, or hybrid mechanisms to allocate resources [131–134]. A central-

ized solution usually use linear program (LP) and needs a central agent with full knowledge of and

real-time access to resources, has high communication overhead, and is combinatorial to solve.

On the other hand, a distributed algorithm updates information on links using periodic request and

replies (RREQ and RREP) with local routing memory on nodes [43]. The latter method reduces

the complexity of routing in time with extra storage space, local updates and minimum communica-

tion. In transportation networks of manned and unmanned vehicles, dynamic algorithms are used

to schedule tasks and find the shortest path [135,136].
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In terms of payment mechanisms in a communication network, the cost of processing and trans-

mitting data shall be distributed among networked elements. The general objective function is to

assign cost or distribute payoff among users in a way that incentivizes optimal and stable behavior

by each participant. In this regard, a well-studied method is proportional allocation in communi-

cation and transportation networks in terms of cost of stability and equilibriums [62, 137, 138]. In

addition, in a network, a mechanism may allocate resources, e.g. find the shortest path, and allo-

cate cost of using resources to users simultaneously [63, 135, 139]. While finding energy-efficient

and dynamic techniques are immensely useful in communication networks, cost allocation mecha-

nisms are well-studied for pricing paths in transportation systems when a centralized planner with

an aggregated cost exists.

In a cloud system federation, a centralized solution (CS) maximizes a global utility objective

function by scheduling tasks and allocating onboard resources, insourcing and outsourcing to

tasks [54,55,127–129]. In a federated solution (FS), a mechanism proposes inter-federate pricing

and resource allocation that satisfies local objective functions or constraints. For instance, a dy-

namic pricing model is proposed for insourcing, outsourcing, and end-user requests. For a cloud

provider, the schematic objective function for this pricing mechanism is [130]:

max
{pi,po,pe}

Vi = service value� outsourcing cost + insourcing value� service cost (3.2)

where Vi is the value of federate i, pi, po, and pe are resource prices for insourcing, outsourcing

and end-user, service value is financial value of cloud service for end-users, outsourcing is bought

service from other federates, insourcing value is the value of provided service to other providers,

and service cost is combined cost of all computational tasks performed by a federate: end-users

plus insourcing minus outsourcing.

A distributed space system is a computational satellite network and ground stations where the
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processed tasks are delivered to ground stations through inter-satellite and downlink communica-

tion [14, 15, 54, 55]. The FSS framework is a federated architecture of distributed space systems

with multiple stakeholders and a distributed system design. The federated scheme in space sys-

tems is defined versus a traditional paradigm of space system design with a centralized goal and

pre-defined missions, called monolithic space systems. In FSS design, interaction and resource

sharing among federates is enabled but not assumed to achieve a collective goal.

Centralized	
Operational	Solution

Federated	
Operational	Solution

Contextual Model Operational Model Resource Allocation Solutions

Fig. 3.1: An operational mechanism for resource allocation with centralized and federated cases.

3.2.1 Research Assumptions and Questions

In this chapter, a simulation application on FSS is developed and used to explore an allocative

mechanism for scheduling tasks and routing data in a federated task processing network of ele-

ments (TNE). For RAS in a federated network of task-processing satellites, this chapter assumes:

A1 a topology of networked computational satellites with limited communication capacity among

elements and dynamic and periodic topology

A2 multiple federates with internal resources and private knowledge for independent RAS

A3 an auctioneer with access to value functions of processing computational tasks in space

A4 a self-centric federate with private preferences for sharing its resources and processing tasks

using its resources
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A5 energy cost associated with communication resources and opportunity cost associated with

storage resources

In the previous section, existing works on allocative mechanisms were discussed in federated

systems, cloud platforms, wireless networks, and satellite systems. However, the proposed solu-

tions in literature contradict assumptions in this work. The solutions to task scheduling problems

in [125] and [126] assume that computational (distributed) elements are connected with limited

communication resources but are managed by a centralized solver/planner. These don’t stand the

Asm. A2 in a federated network with decentralized decision makers. In [130], similar to some other

allocative solutions to federated cloud systems, the model assume non-existing communication

constraints, e.g. network topology, among cloud machines which is against Asm. A1 introduced ear-

lier. In routing problems and finding shortest paths in wireless sensor, ad-hoc, and communication

networks, e.g. in [43, 133, 136, 137], the proposed models assume constraints on communication

bandwidth and links but fail to satisfy the assumptions A1 and A2 for multiple owners, dynamic and

periodic designs for satellites, and network topology. The works in scheduling tasks and routing in

robotic team missions and transportation systems also fail to stand by above assumptions in terms

of networks topology, data routing (instant data delivery), and federated owners of resources. For

mechanism design in a networked system, VCG scheme has been used in finding shortest path

and pricing routing resources, however, this scheme is not well-defined for combinatorial schedul-

ing and routing in multi-hop and multi-source networks. In addition, the latter mechanisms doesn’t

take into account Asm. A2 in a federated system and is vulnerable to collusion and strategic bidding

by participants in Asm. A4.

The research question addressed in this chapter is: “How to formulate a pricing and allocative

mechanism that incentivizes self-centric components and improve the collective performance of a

federated engineering systems?”. This question is detailed by these sub-questions:
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Q1 How to model scheduling tasks and multi-hop routing (operational model) in a federated TNE

with technical and financial constraints?

Q2 How to address above problem in networks with dynamic and periodic topology (e.g. feder-

ated satellite systems)?

Q3 How a linear program applies to the above operational model in federated TNE ?

Q4 How to discover preferences by federates for sharing their internal resources, i.e. type of

agents, what bidding language is used, and what information is shared by participants to an

auctioneer and other participants?

Q5 What is the objective function for a pricing mechanism across the federation?

Q6 How do rational strategic participants learn (adaptive) bidding during time?

Q7 Which collective metrics can capture the performance of the auctioneer?

3.2.2 Research Methodology and Design

In this chapter, the following steps address the research question:

S1 defining structural and functional components in a federated satellite systems (FSS)

S2 formulating the operational model of a centralized RAS based on the value and cost functions

of federates and resources

S3 developing an adaptive bidding model for federates for simulate strategic bidding

S4 developing a pricing mechanism to facilitate exchanging resources among federates

S5 developing an application with above components

S6 developing a simulation study to evaluate the proposed mechanism for collective metrics
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In this chapter, a general model of a federated network is introduced to increase collective value

of processing and delivering tasks using distributed elements. In step S1, I employ a graph-based

model for spatial topology of elements and connections, i.e. location of elements and communica-

tion links. For step S2, a global utility function is defined based on value functions of processing

tasks. A trusted third-party auctioneer for pricing resources in federation is used and a one-sided

reverse bidding by federates is used by resource owners to share preferences by the auctioneer.

In step S3, a reinforcement learning model captures the strategic behavior of bidders. In step S4,

the auctioneer uses a non-linear optimization algorithm to optimize the global utility and minimize

marginal cost for each federate.

For simulation study, an application combines above modules and multiple combination of FSS

configurations are used to put into test the hypothesis in this chapter. For testing the introduced

method, five designs are selected that covers two and three federates and different types of satel-

lites. Since the design cases are simple with minimum assumptions, a handful of designs can

capture the performance of the proposed mechanism. Multiple collective metrics are introduced in-

cluding an additive utility function for the global utility function of the federation, i.e. collective value,

number of shared links among federates, bids submitted by federates, and actualized prices for

exchanging resources. For results, increasing the number of exchanged resources in combination

with increasing the collective value for all federates confirm the better performance of the pricing

mechanism in comparison with the case with a centralized solution to bidding constraints by fed-

erates, i.e. the baseline solution. Nonetheless, a case with no financial constraint by participants

(minimum bids) is global value-maximizing.

3.3 Federated Network Model

A federated network combines distributed resources for processing tasks, storing data, and com-

municating with other elements within a context of computational demands and monetary value
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Fig. 3.2: An auctioneer is an independent and trusted
entity that communicates with federates and is informed
of contextual parameters and elements such as avail-
able tasks, network topology, and energy cost of com-
munication. The auctioneer suggests solutions to op-
erational model and prices for exchanging resources to
federates.

functions for processing tasks. An operational model runs cycles of resource allocation and finan-

cial transactions among federates and its solution includes decision variables for assigning tasks to

elements, allocating links, resolving tasks, and storing data. This section introduces and formulates

an operational model run by a trusted auctioneer that communicates with federates and optimizes

their operational value (see Fig. 3.2). Mathematical notations for structural and operational mod-

els are borrowed from models of networked systems and Infrastructure System of Systems (ISoS)

introduced by Grogan and de Weck in [140].

I represent elements with nodes, feasible communication links with edges, a federation with

set of federates where a federate is defined by a set of nodes, links and behaviors. An element

has a federate owner and internal properties such as capacity for storage and processing tasks.

A link also belongs to a federate and has properties such as source, destination and capacity for

data transmission. In our general model, communication links are state-dependent, which indicates

every link is associated with a state, then, every state maps to a network topology. At each time

step, computational demands, or tasks, are available to one or multiple elements, for pick-up. A

task has contextual issuer, element processor, and temporal value function. The element that picks

up a task, agrees to its value function and a penalty amount in case of failure to deliver the task.

Lastly, a federate is the decision-making authority that manages its elements and resources through
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behavioral functions.

In addition to physical components, functional and synthetic concepts in networked systems are

introduced. A path is an acyclic set of feasible links to deliver data from a source to a destination

element. Accordingly, a path is associated with a task which satisfies network constraints such

as maximum data transmission bandwidth. At each time step, networked elements might pick up

multiple tasks. In this case, multiple paths should deliver those tasks without exceeding any con-

straint in the network. Functional components retrieve the usage, value, and cost associated with

structural model. A relational function finds the federate owner of an element or task, another finds

the cumulative cash for a federate. A data function finds task data saved on element’s internal

storage, and dedicated capacity on a communication link. A cost function finds cost associated

with network resources (communication links, paths, storage). A value function calculates value of

resolving tasks at destination, value of an path for federates and federation value. Some behav-

ioral functions describe the processes associated with processing tasks, data transmission, and

resolving data or storing tasks on elements.

In the operational model, the operational objective function maximizes the net value of process-

ing tasks in federation. To capture the individual rationality of federates, it minimizes cost associated

with delivering tasks.

3.3.1 Structural & Functional Model

A structural model defines variables and formulates concepts in a federation. In a federated net-

work, this model represents elements by E = {ei}, communication links by L = {likt}, and feder-

ates by F = {fj}. A link likt connects an element ei to element ek at time step t and has technical

properties such as capacity for data transmission:

likt = (ei 2 E, ek 2 E, t 2 Z+, capacity 2 Z+)
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where an element and all links to it belong to a federate. At each time step, a set of computational

tasks Ta = {Tn} appear to elements. A computational task is associated with data size, initiation

time and a negative value for failure:

Tn = (element 2 E, size 2 Z+, init 2 Z+, penalty 2 R�)

A path Psj is an end-to-end list of elements that connect source element es to a destination

element ej . The data structure associated with a path contains the associated task, communication

links, cost functions, and two elements:

Psj = (task 2 T, links = {likt 2 L},

source = task.element 2 E, last = ej 2 E, cost 2 R+,

time = max({t : likt 2 links}) 2 Z+) (3.3)

s.t. :

9a, b : lsbt 2 Psj .links & lajt 2 Psj .links

8labt 2 Psj .links, b 6= j : 9lbcd 2 Psj .links

8labt 2 Psj .links : @lcbt 2 Psj .links

where the first two constraints ensure end-to-end connection from a source to a destination and the

third constraint removes cyclic paths. The federate associated with sharing an element or a link,
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processing a task, or using a path is defined by functions:

Fe : e 2 E ! f 2 F

Fl : likt 2 L! f = Fe(ek) 2 F

Ft : T 2 Ta ! Fe(T.element) 2 F

Fp : Psj ! Fe(es)

respectively. A federate is a self-centric (strategic) entity with financial independence. The cumu-

lative value of a federate is represented by a cash function C(f) and the data size stored on an

element or allocated to a link. Data function (D) retrieves the stored data size on an element and

the allocated data transmission on a link and its definition is modified accordingly. The data saved

on internal storage of an element or transmitted by a link are retrieved by:

De : e 2 E ! Z+

Dl : l 2 L! Z+

In this regard, capacity function is defined in similar form to D and finds upper constraints on D,

such as maximum storage capacity and maximum data transmission capacity per time-step on an

element or a link:

cape : e! Z+

capl : l! Z+

For financial constraints, a cost function maps a link to its cost of sharing with other federates
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per a unit of data, i.e. ⇣ : (f 2 F, l 2 L)! R+:

⇣ : (f, likt)!

8
>>>>>><

>>>>>>:

✏ i 6= k and f = F(likt)

cF(l) i 6= k and f 6= F(likt)

SP otherwise

(3.4)

where ✏ is the actual marginal cost of using a link assumed to be equal for all links, cf is the

cost of sharing f ’s link with other federates (✏ ⌧ c̄f ) and SP is storage penalty as a proxy for the

opportunity cost of using scarce storage capacity. Finally, a value function maps a task to its value

at the time of resolution at final destination Vt : (T, t 2 Z+
� T.init)! R.

A path’s value for a federate f is defined as a premium resulting from its associated task and

inter-federate links:

Vp : (P, f, ⇣)!

8
>><

>>:

Vt(ts, tm)�
P

l2P
⇣(f, l) f = Fe(src)

P
l2P :Fl(l)=f

[⇣(f, l)� ✏] otherwise

(3.5)

where ts (task), tm (time) and src (source) are from Eq.3.3. Finally, assume P as multiple paths at

a time step, federated value function is defined as:

Vfed(f, ⇣) =
X

P2P

Vp(P, f, ⇣) (3.6)

given a cost function ⇣ for exchanging resources.

3.3.2 Behavioral Model

The operational model, at each time step, finds the existing paths, i.e. the combinatorial problem of

using multiple links to build a path. In case of existing tasks at each time step, I also have additional

constraints for link capacity. To address this problem using a linear model, I need to know the
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longest length of a feasible acyclic path to deliver any existing tasks. The length of a path is defined

as the number of its links. In this case, I define the concept of sub-step s using a time step t by

dividing the latter by the maximum path length in a federated network. Assume the maximum path

length m in network, for n time steps we have:

s = {s(0), s(1)s(2), ....s(n⇤m�1)}

s.t. :

s(k⇤m)
⇠= tk : k 2 {0, 1, ..., n� 1}

and other values of s are evenly distributed between every pair of consecutive time steps. Since the

value function (V) is defined based on real time steps, function ⌧ converts a step to its corresponding

time step in a behavioral model:

⌧ : s(k⇤m+b) ! tk, b < m (3.7)

and st is a set of sub-steps defined after time step ti and before its subsequent time step ti+1:

st : {s 2 s : t = ⌧(s)}. (3.8)

Figure 3.3 shows the sub-steps in a sample multi-task routing.

In behavioral model, an element processes a task after task pick-up and stores its data on

internal storage. The operational model dedicates links and resolves the tasks. The process that
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Fig. 3.3: sub-steps on delivery paths where Ti repre-
sents a computational task, Dj is a destination element,
and Pi is data delivery path for Ti. A sub-step skm+b of
a time step tm simulates data transition on a link. The
sequence of sub-steps matches the sequence of links
on a path. The number of sub-steps is equal to maxi-
mum length of the longest path(s) in a multi-path routing
solution. In this example, both tasks are delivered simul-
taneously (tm) but MILP considers two sub-steps for P1

and three sub-steps for P2.

an element follows and pick up and process a task is called task process:

Iprocess = Iprocess(T, s) (3.9)

T.init ⌧(s)

De(T.element) De(T.element) + T.size

T T [ {T}

where T is the set of processed tasks and T.element is the processing element for task T , and D

is data function.

Assume D is the set of destination elements when data transmission is the process of transmit-

ting task data from source to a destination through one or multiple communication links. When a

delivery path is available to an element, it can resolve a processed task by delivering it to a destina-

tion. In addition, in some circumstances such as task expiration and storage limitation, a federate
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can resolve a task but must pay its penalty. This task resolving is:

Iresolve = Iresolve(T, e, s) (3.10)

C(Ft(T )) C(Ft(T )) + V(T, ⌧(s)) if e 2 D

C(Ft(T )) C(Ft(T )) + T.penalty if e /2 D

De(T.element) De(T.element)� T.size

T T� {T}

And, data transmission function through a link is defined as:

Itrans = Itrans(T, likt, s) (3.11)

C(Ft(T )) C(Ft(T ))� T.size⇥ ⇣(Ft(T ), likt)

C(Fe(ek)) C(Fe(ek)) + T.size⇥ [⇣(Ft(T ), likt)� ✏⇥ (i 6= k)]

Dl(likt) Dl(likt) + T.size

Iresolve(T, e, s), if e 2 D

where (condition) is equal to 1 when the condition holds and 0 otherwise. The intuition for above

function is that a federate Ft(T ) is affected by task value minus the link cost, and federate owner of

the link is also affected by the link cost. However, in transmission process on storage link (i = k in

likt), no internal cash or storage is affected.

In cases that an element has access to a new task, without a viable path to deliver the task at

current time, it can decide on data storage when it stores processed data for future delivery:

Istorage = Istorage(T, t) (3.12)
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3.4 Operational Model

The operational model in a federation optimizes value and cost for its federates given a set of

computational tasks and a topology for networked elements. In [39], an integer linear program

(ILP)-based algorithm maximizes profit and minimizes cost in a federation of cloud resources. The

operational model in this section also maximizes the collective value of processed tasks in a feder-

ation and minimizes individual cost for federates, ensuring no incentive to reroute data for a lower

cost.

The MILP, at each time step, defines decision variables as:

xproc : (T 2 T, e 2 E)! {0, 1}

xtrans : (T 2 T, l 2 L, s 2 s)! Z+

xresolve : (T 2 T, e 2 E, s 2 s)! {0, 1}

xread : (T 2 T, e 2 E)! {0, 1}

xstore : (T 2 T, e 2 E)! {0, 1}

where s shows a sub-step in Eq.3.8 and we excluded time t variable for notational simplicity.

3.4.1 MILP Objective Functions

The objective function for maximizing collective value is defined as:

Jvalue = task value - task penalty - energy cost (3.13)

where task value denotes the value achieved from processing tasks and penalty compensates

for failing to deliver a task before its expiration time. Energy cost is the marginal cost of data

transmission using a link known to federates and the auctioneer. The value-maximizing problem is
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defined as:

find: xprocess, xtrans, xresolve, xstore, xread

maximize: Jvalue (3.14)

subject to several technical constraints: 1) capacity of link for data transmission, 2) capacity of

data storage on elements, 3) end-to-end connectivity of paths, and 4) expiration time for tasks

on storage. The solution to the above optimization function finds xprocess for processing a task,

xstore for storing a task, xread for reading a task from storage, xtrans for transmitting task data

through an inter-element link, and xresolve for resolving a task on an element. Appendix B gives

detailed definitions of target variables and Appendix B.1 defines detailed equations and constraints

for Eq.3.14.

This model maximizes the value of processed tasks and minimizes their delivery path cost. A

path is a sequential set of elements (and links) that connects a source to a destination and is

discussed later (see Sec 3.5). Maximizing the value of tasks ensures that federates can’t pick-up

other available tasks outside this operational mechanism (untruthful behavior) for a higher value as

no additional task with feasible delivery path and cost exists. Minimizing path cost ensures stable

solution as federates don’t have incentive to reroute their delivery path for a lower cost.

T⇤
 arg max

tasks

(federation value)

P⇤
 arg min

links

(path cost)

(3.15)

where T⇤ is the set of tasks that maximizes the total value for federation, and P⇤ is the set of

paths that minimizes the delivering cost for those tasks.
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Maximizing collective value is desirable for an operational mechanism but does not guarantee

a routing with lowest cost for all federates. Minimizing routing cost is important for two reasons: 1)

the solution may not be accepted by a federate when alternative paths with lower cost exist, 2) the

solution does not reflect the actual value of operational model for federates. Accordingly, a second

objective function and optimization problem minimizes the cost of inter-federate communication for

a given set of processed tasks:

find: xtrans, xresolve

given: x@
read

, x@
store

, x@
process

minimize: [communication cost + rerouting failures] (3.16)

for which at least one solution (to Eq.3.14) is guaranteed. In the latter equation, communication cost

expresses inter-federate cost functions and rerouting failure (the number of failed tasks) ensures

all processed tasks are delivered in the new routing. Finding the target variables (trivially) gives a

solution to the operational model which is interpreted as a set of paths to deliver tasks, namely a

path bundle. The above problem is subject to technical constraints presented for Eq.3.14 and the

detailed formulations are presented in Appendix B.2. Assuming t = {tn} as operational time steps,

an operational run in Algorithm 3-I summarizes the operational model.

Algorithm 3-I: operational run at time t.

1: sub-steps: find the sub-steps of time t: st

2: contextual: receive from contextual model: existing links L, available tasks Ta

3: federates: receive information on elements E, data function D, capacity function, destination set: D, and cost functions

⇣ from federates

4: value: maximize federation value and find (T⇤ : xprocess, xresolve, xstore) using Eq. 3.14
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5: cost: minimize path cost and find (P⇤ : xtrans) using Eq. 3.16

6: for s 2 st: do

7: for T 2 T⇤: do

8: for l 2 L: do

9: if s = min (st)&xprocess(T, t): then

10: process: Iprocess(T, e)

11: end if

12: if xtrans(T, l, s): then

13: transmit: Itrans(T, l, s)

14: end if

15: end for

16: for e 2 E: do

17: if xresolve(T, e, s): then

18: resolve: Iresolve(T, e, s)

19: end if

20: end for

21: end for

22: end for

In a network with static topology or known dynamic topology of time steps (e.g. periodic topology

in satellite systems), the operational model can also find paths in future time steps. Nonetheless,

the network topology of L for n time steps might not be known in some networks, e.g. a robotic

team or device-to-device (D2D) wireless networks. To address this issue in operational model, the

networked model should summarize the value of all future topologies in a storage opportunity value

(similar to SP in Eq. 3.4 with complementary meaning). In other words, a probable path to delivery

in future is captured by an opportunistic value of storage penalty at current time in networks with

unknown future topology. Then, a solution to the operational model uses xstore to reflect routing in
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later time steps.

As was mentioned in Sec. 3.3.2, the intuition for sub-steps is to create linear representation

of combinatorial routing. With these binary decision variables (efficient task process, link usage,

storage, and resolving), efficient set of paths to deliver a selected set of tasks (path bundle) is

trivial and achievable in linear time (iterate over links and reconstruct paths from chained links).

Nonetheless, the maximum federation value is not guarantied to deliver the tasks with the lowest

available cost even for a single task delivery. The latter concern is important for two reasons: first,

the solution would not be accepted by federates as they can switch to other paths with lower cost.

Second, I don’t realize the value of federation for a federate with a certain cost function.

(a) (b) (c) (d)

Fig. 3.4: The solutions for efficient routing in federated networks given cost function with edge density equal to 25% of
possible edges (11 edges): a) cf > 1: this case blocks all of the inter-federate communication since its cost greater
than maximum task processing value. b) cf = 0.6: a federates charge almost 60% of a task value for inter-federate
communication, c) cf = 0.4, d) cf = ✏: the minimum link cost which corresponds to centralized solution with collective-
efficient solution.

(a) (b) (c) (d)

Fig. 3.5: Optimized solution for federated networks given cost function with edge density equal to 33% of possible edges
(15 edges): a) cf > 1, b) cf = 0.6, c) cf = 0.4, d) cf = ✏.
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(a) (b) (c) (d)

Fig. 3.6: Optimized solution for federated networks given cost function with edge density equal to 80% of possible edges
(35 edges): a) cf > 1, b) cf = 0.6, c) cf = 0.4, d) cf = ✏.

Fig. 3.7: Task value function with highest value of 1 and
diminishing value until expiration time of 5 elapsed time
steps (since tasks pick- up). Penalty of 0.2 for failure to
deliver applies after expiration time step.

3.4.2 Routing Case

This application case simulates a federation of task processing with ten elements: two destinations

and eight potential sources. In this chapter, all prices and values are normalized between 0 and 1,

relative to maximum task value. The minimum cost is assumed ✏ = 0.01 and the operational model

is run for different inter-federate cost functions (✏, 0.4, 0.6, and > 1). For instance, cf > ✏ and cf > 1

result in maximum and minimum inter-federated resource exchange respectively.

Another dimension for inter-federate exchanges is created by link density in a network. Higher

density means higher probability for existing an inter-federate link but lower probability for depen-

dance on a link for routing. Fig. 3.4, Fig. 3.5 and Fig. 3.6 show topologies with edge-densities of

25, 34 and 80%. For operational run, task values, task data size, and a link’s data capacities are

assumed to be equal to 1, 1, and 2. The results from the MILP model introduced by Eq. 3.14 is

shown using directed arrows in the network where dotted lines show available links. The federates
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are distinguished by gold and green colors, source elements with available tasks are represented

by circle nodes with border lines and destination elements are shown by square nodes.

Table 3.1 shows relative values by federates in one operational run in cases with various edge

densities represented in Figures 3.4 to 3.6. Maximum value (last column) shows the maximum

value relative to a task value collected by a federate and is associated with number(s) 1 on the

same row. Table 3.2 shows the relative collective values to the maximum value collected by all

federates.

Case Federate (a) cf > 1 (b) cf = 0.6 (c) cf = 0.4 (d) cf = ✏ max value
Case1 F1 0.91 0.91 1 0.9 2.15
Case1 F2 0.67 0.67 0.93 1 2.96
Case2 F1 0.45 0.76 1 0.9 4.32
Case2 F2 0.5 0.9 0.89 1 3.91
Case3 F1 0.49 0.7 0.6 1 3.97
Case3 F2 0.71 0.93 1 0.71 5.52

Table 3.1: Federated relative values for cases in Figures 3.4 to 3.6 [Fn: federate n].

3.5 Mechanism Design

This section proposes a mechanism for pricing resources among federates to increase their collec-

tive value. To simplify notations, I represent the solution to Eq.3.14 and Eq.3.16 by bundle of paths

P and a bundle function:

B : ⇣
Eq. 3.14 & 3.16
����������! P (3.17)

Case (a) cf > 1 (b) cf = 0.6 (c) cf = 0.4 (d) cf = ✏ max value
Case1 0.8 0.8 1 1 4.92
Case2 0.5 0.87 1 1 7.83
Case3 0.75 1 1 1 7.92

Table 3.2: Relative collective values for three cases in Table 3.1
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where the input is the cost function defined for storage and communication resources. A collective-

efficient solution can be achieved using the latter function by assuming a minimum cost function for

links. In other words, when federates share resources with minimum cost, a operational solution is

equal to the optimal solution for a federation.

Definition 3.5.1. Minimum cost function is defined for links and paths as:

⇣0 : likt !

8
>><

>>:

✏ i 6= k

SP otherwise

(3.18)

The collective (efficient), federated (realistic), and independent (pessimist) solutions to opera-

tional model are defined as:

Definition 3.5.2. Federate-efficient solution (FES): for bundle function B and cost function ⇣ is:

P⇣ = B(⇣)

Definition 3.5.3. Collective-efficient solution (CES): for bundle function B and cost function ⇣0 is:

P⇣0 = B(⇣0)

.

Definition 3.5.4. Independent-efficient solution (IES): for bundle function B and cost function ⇣I is:

P⇣I = B(⇣I > taskvalue)

.
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3.5.1 Objective Function

The proposed mechanism in this section maximizes federation value and ensures expected payoff

for each federate in FES. The general form of the pricing mechanisms combines Eq.3.14, Eq.3.16,

prices, and a value constraint:

find: ⇣ 0, xtrans, xresolve

given: x@
read

, x@
store

, x@
process

maximize Jvalue (3.19)

subject to:

Constraints for Eq.3.14

Vfed(f, ⇣
0) � Vfed(f, ⇣) 8f 2 F (3.20)

where ⇣ 0 is the alternative pricing for sharing and ⇣ is the current cost function provided by federates.

Equation 3.20 ensures federates achieve higher value than the FES’.

The search space for data transmission on links (xtrans) in above equation is limited to FES and

CES path bundles ({l : 9P 2 P⇣0 [P⇣ , l 2 P}), allowing the above formulation to be disaggregated

using a non-linear method such as sequential least squares programming (SLSQP) [141] with sep-

arate operational and pricing functions. Using the latter method and parameters xtrans and xresolve

from Eq.3.16, I find P⇣0 and P⇣ and all possible bundles using permutations of their links to solve:

find: ⇣⇤

given: x@
read

, x@
store

, x@
process

, x@
trans

, x@
resolve

maximize: Jvalue (3.21)
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subject to incentive constraint in Eq.3.20. Algorithm 3-II illustrates the proposed mechanism:

Algorithm 3-II: Pricing Mechanism

1: federated: find FES: P⇣ .

2: values: find federated values in FES: Vf = Vfed(f, ⇣), 8f 2 F.

3: collective: find CES: P⇣0.

4: path bundles: find all path bundles using links in {l : 9P 2 P⇣0 [P⇣ , l 2 P}: B = {Pi}

5: sort bundles: sort bundles descending with collective values: B = sortdec:V(B)(B)

6: for P 2 B do

7: new prices: find resource prices L⇤ by solving optimization in Eq.3.21

8: new values: find federated values for new pricing V ⇤
f = Vfed(f,L⇤) � Vf , 8f 2 F

9: if V ⇤
f � Vf , 8f 2 F then

10: break

11: end if

12: end for

13: suggest: prices L⇤ to federates

3.5.2 Computational Cost and Limitations

The computational complexity of Algorithm II (AII ) relies on solving a MILP (lines 1 and 3 of AII ),

sorting and searching all combinatorics of path bundles (lines 5 and 6 of AII ), and SLSQP opti-

mization. However, bundles with the highest collective value likely satisfy the value constraint in

Eq.3.20, implying that sorting and searching minimally contribute to computational cost. Therefore,

AII requires minimal iterations of MILP operational runs because it finds an applicable prices to

the scheduling/routing solution with highest expected value. To analyze the computational cost as-

sociated with an operational run, we divide the routing problem into: finding paths from sources
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to destinations and bundling non-conflicting paths from multiple sources in a network. Figure 3.8

shows four routing bundles for a network with 10 elements and two sources. By increasing the net-

work size, Fig. 3.9 shows the computational cost of searching paths (from sources) and searching

for viable path bundles. Accordingly to the this plot, finding path bundle is significantly costlier than

finding paths in larger networks.

(a) a topology (b) source 1 paths (c) source 2 paths

(d) bundle 1 (e) bundle 2 (f) bundle 3 (g) bundle 4

Fig. 3.8: A path finding and routing solution to a sample network with two sources e02 and e03 and two destinations e07 and
e08: (a) shows initial topology with links between elements, (b) shows two paths from e02 to destinations e07 and e08 (c)
shows two paths from e03 to destination e07 and (d)-(g)show four possible path-bundles for routing task data a destination.

The proposed mechanism is limited by some assumptions introduced in Sec. 3.2.1. First, the

auctioneer is a trusted entity with knowledge of strategic information such as availability and cost

of computational resources. However, federates may not disclose truthful information as a feder-

ate might allocate its resources to mission unknown to the auctioneer. Second, we don’t consider

corrupted behavior by an auctioneer including dual resource prices for buyers versus sellers and

collusion with some federates. Last, the computational tasks are assumed known by a value func-
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Fig. 3.9: Averaged run time associated with finding
paths and path-bundles illustrated in Fig. 3.8 depend-
ing on the network size. The sources and destina-
tions share %25 of vertices combined and edge den-
sity ranges from %15 to %6 for 10 to 40 vertices. Re-
sults from network topologies created from 300 random
seeds are used to compute averaged values for a net-
work size.

tion although those tasks are dynamic in availability and expiration.

Fig. 3.10: A sample element network of computational resources including two federates where tasks are available to three
elements and communication links connect all elements to destination nodes with capacity(l) = 2⇥tasksize. The left figure
shows federated solution while the right figure shows the solution based on the mechanism introduced in Eq.3.19 with new
prices, routing and values for federates. The proposed mechanism enables processing all tasks {T1, T2, T3} versus only
two {T1, T3} in the initial solution.

3.5.3 Rerouting Case I

The proposed mechanism in Eq.3.19 solves resource allocation to find new routing solutions and

offer prices for resources. This section illustrates how the mechanism affects two federates (f1 and

f2) using an example with a routing solution. For simplicity, all prices and values are relative to
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maximum task value and we assume energy cost of communication ✏ = 0.01.

Figure 3.10 shows a routing solution to initial bids by f1 and f2 (left) and a rerouting solution

by the auctioneer (right) in a simple topology. In this example, a federate processes tasks, bids to

share its links (edges) with the other federate and delivers its data using available links (with feasible

cost) to destination. Assuming 0.5 and 0.01 as bids by federates, tasks T1 and T3 can be processed

and delivered to destination because the minimum cost of delivering T2 to a destination is equal

to 2 ⇤ 0.5 + 0.01 is higher than a task value. In this case, the suggested price by the auctioneer

is 0.494 for shared links by both federates. Accordingly, the auctioneer finds a new solution that

includes processing T2 by f2, which results in value 0.970 for f2. Assuming 0.6 and 0.4 for bids, the

suggested prices increases to 0.494 and 0.884 and new values for federates are 1.170 and 1.750.

For higher bids, e.g. 0.8, the auctioneer suggests 0.494 and 0.979 for prices and resulting values for

federates are 0.980 and 1.940, compared to 0.370 and 1.580 without using the mechanism. In this

network, the rerouting solution by the auctioneer supports different bidding conditions by federates

while the prices by auctioneer ensure equal or higher values for both federates.

Fig. 3.11: A sample federated network with elements, tasks, federates, links, and cost function. Link costs (400 and 600)
are relative to maximum task value (1000) during this chapter.
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3.5.4 Rerouting Case II

Similar to Case I, using a different network topology with more complex routing solution, the FES for

task processing fails to process and deliver all tasks processed in CES. The alternative routing is

shown in last column of Table 3.3 with alternative pricing that ensures expected payoff for federates

while maximizing value. The final cost function and federate payoff are compared in Table 3.4.

Task FES paths CES paths
T1 None e1, e2, e4, e5, e7
T2 e2, e4, e6 e2, e4, e6
T3 e3, e6 e3, e6
T4 e4, e6 e4, e6

Table 3.3: Tasks: Averaged path cost and length

Cost and Value FES Pricing mechanism

Link cost
F1: 0.6
F2: 0.5

0.577
0.282

Federate value
F1: 2.2
F2: 0.8

2.308
1.695

Relative Collective Value 3.003 4.004

Table 3.4: Federated Link Costs and Values

3.6 Federated Satellite Model

This section develops an FSS application, selects design configurations as application cases and

proposes an adaptive cost function (in Eq.3.4). An orbital model of a federated TN of satellites

is based on concepts introduced in Sec. 3.3 and a few of conceptual frameworks introduced by

Grogan et. al. in [54] and [55]. In an orbital model, elements are either a satellite or a ground

station and the relative location of satellites and the topology of networked elements are periodic.

The location of an element is retrieved using a propagation function at each time step:

L : (e 2 E, t 2 Z+)! (sector 2 S, altitude 2 A)
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where S = {1, 2, ..., 6} shows two-dimensional sectors of 60-degree slices (⇡3 radians) and A =

{0, 1, 2, 3} shows possible altitudes associated with surface (SUR), low earth orbit (LEO), medium

earth orbit (MEO), and geosynchronous earth orbit (GEO). For each radial sector, computational

tasks such as visual imaging (VIS) and synthetic aperture radar (SAR) are available to LEO and

MEO satellites above the same sector.

A communication link (see Eq. 3.4) exists between two elements depending on their type and

location. A communication link is feasible for:

1. Inter-satellite link: satellites located at adjacent sectors or the same sector, e.g. in sectors

(1! 2), sectors (1! 6), or sectors (4! 4).

2. Down-link and up-link: a satellite and a ground station are located at the same sector.

In federated networks, the state function is defined by network topology (S in Sec. 3.3.1). From

the above condition, I know location of elements determine feasible links and network topology.

Then, since location of satellites are periodic, I also have periodic network topology and periodic

states. In the structural model (Sec. 3.3.1), value and data functions are exogenous to the model

while communication cost (cf ) and storage penalty (SP) (Eq. 3.4) are endogenous variables to the

model. Storage penalty and link costs are different as SP is an opportunity cost estimated using

federate’s historical information and cf is a pricing decision by a federate.

The following sections select network topologies for application cases, formulate a probabilistic

model to estimate SP, and propose an adaptive model to offer communication cost (cf ).

3.6.1 Design Selection

A design specifies initial conditions for type and location of satellite and ground stations. Selected

designs aim to: 1) develop an application for a federated network, 2) maximize the opportunities for

exchanging resources across federation, and 3) explore distributed (independent) functionality for
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(a) (b)

Fig. 3.12: Networked model of orbital satellite model: a) periodic orbital model with two ground stations and four medium
orbit satellites (MEO), b) periodic orbital model with two ground stations, four satellites on medium altitude (MEO) and one
satellite on low orbit altitude (LEO).

each federate.

For the first goal, a networked model of orbital federation at each time step is suggested.

Fig. 3.12 shows the networked model of two orbital designs using the location of elements and

the communication links. To achieve a maximum task processing across a federation, a balance

holds for number of ground stations and the number of satellites. The cumulative values of federates

in CES (e.g. summed values after 240 time steps) shows an estimation of a design’s performance

regarding task processing. Assuming a cost for each design, chosen designs are selected from

Pareto-optimal line of cost versus value. Design cost is calculated based on the number of ele-

ments, type of each element, and number of communication links with adjacent elements. In the

cost function, relative cost of LEO, MEO, GEO, and GS are 1, 2, 5, 10 and cost of each additional

communication modules is assumed as 0.2 and 0.4 for LEO and MEO, then the total cost is nor-

malized by maximum cost of 50. Figure 3.13 shows a design tradespace 472 designs computed

under independent and centralized operational models. In this, the top line shows non-dominated

designs to maximize CES value and minimize cost. In this figure, fewer than 29 unique designs are
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Fig. 3.13: The relative operational value of centralized and independent solutions corresponding to relative cost of design
with Pareto-line of designs for 472 permutations of types and relative location of satellites and ground stations. The design
cost is normalized by maximum value of 50 with 1, 2, 5, and 10 for relative costs of elements. The black circles show the
four of the selected designs drawn in Fig. 3.14. The collective value is normalized by 60k tasks.

located on the Pareto line.

For the number of federates, two or three federates are chosen to keep results tractable. Ac-

cordingly, three or four elements are assigned to each federate and in order to keep the distributed

functionality for federates, the number of ground stations are equal to the number of federates.

Fig. 3.14a–3.14e select five designs from the tradespace where numbered hexagons are elements

with a sector (radial) and altitude (radius) and colors show the federates. In these figures, four out

of five designs are selected from the Pareto line in Fig. 3.13 and one design (D. IV) is created by

adding a GEO satellite to D. III for considering its effect on balanced operation of federates and

the mechanism.
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Design Federates Stations Satellites

D. I
F1
F2

SUR1
SUR4

MEO1, MEO4, LEO1
MEO5, LEO2

D. II
F1
F2

SUR1
SUR4

MEO1, MEO4, LEO1
GEO4, MEO5, LEO2

D. III
F1
F2
F3

SUR1
SUR3
SUR5

MEO1, LEO2
MEO3, MEO5
MEO6

D. IV
F1
F2
F3

SUR1
SUR3
SUR5

MEO1, MEO2
MEO3, MEO5
GEO5, MEO6

D. V
F1
F2
F3

SUR1
SUR3
SUR5

MEO1, LEO1
MEO2, LEO2
MEO3, LEO3

Table 3.5: The application design cases for an orbital federated satellite system. Element location:
[altitudes : SUR = 1, LEO = 2,MEO = 3, GEO = 4] + [sector], e.g. MEO1: [MEO] + [1].

3.6.2 Storage Penalty

In FSS model, the network consists of spatial (communication) and temporal (storage) links. In the

cost function introduced by Eq. 3.4, SP is the expected cost of storing versus delivering data of an

task. Realistic estimation of SP is essential for a federate’s decision to pick up and deliver tasks.

In technical terms, a federate has to estimate SP to find the shortest path for tasks. For instance,

biased estimation of this value toward lower cost incentivizes a federate to store data at the cost

of missing better pick-up opportunities at later time steps; and, the opposite case incentivizes it to

deliver data when paths with lower overall cost exist in future. This section introduces a probabilistic

method to estimate storage penalty.

SP depends on: 1) task delivery value, 2) satellite state, e.g. storage capacity, location, 3)

expected task pick-up opportunities, 4) network topology in future and 5) link cost function (⇣)

by other federates. I estimate storage penalty by estimating expected net value of tasks being

delivered (task value minus path cost). For probabilistic cost estimation, a federate tracks and uses

the historical tasks of a state (network topology). The first intuition in this method is to use the net

value of historical tasks for next time step to calculate expected value of SP. In periodic federated
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(a) (b) (c)

(d) (e)

Fig. 3.14: Selected Pareto-optimal designs for orbital FSS detailed in Fig. 3.14: (a) Design I: two federates, two ground
stations, five satellites, (b) Design II: two federates, two ground stations, six satellites, (c) Design III: three federates, three
ground stations, five satellites, (d) Design IV: three federates, three ground stations, six satellites, (e) Design V: three
federates, three ground stations, six satellites.

networks such as orbital FSS, the network topology is repetitive when a limited number of states

can capture the periodic aspect of a federation. Accordingly, we define element state by its location

in model, e.g. satellite’s sector. In addition, I expect that network topology and historical data give

most valuable information for estimating path cost. This suggests that the state-based model is

appropriate to estimate SP. 0  p  1 reflects the probability of an available task at each time

step and for each satellite. In our model, I assume that computational tasks are always available

(abundant) at each sector to be picked up. However, p is still useful to represent cases where no

feasible path exist for some tasks, for instance, when some tasks cannot be delivered until being
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expired or no path with a feasible cost exist.

Internal storage is a resource available to elements and is associated with the opportunity cost

of storage. For instance, maximum storage limits an element’s opportunity to pick-up tasks at next

time step without the current tasks being delivered. In this case, missing a delivery opportunity

(storage) reflects both missing task pick up and missing task delivery. Instead, with enough storage

for multiple tasks, the penalty is lower as the storage opportunity only reflects missing task delivery.

To include this parameter, two options are: first, to update states with the internal storage, or,

to normalize SP with internal storage. The second option is prefered because network topology

has valuable information by being linked directly to states. I divide the estimation by its maximum

available memory at next time step.

The intuition behind this division is from a simple mathematical model of a storage unit, a task

pick up opportunity, and a task delivery opportunity. In this model, if a task is available and memory

is full, the task is missed, only one task can be delivered at each time step, and task delivery and

task availability are stochastic variables. Appendix A discusses a closed-form solution for storage

penalty for memory sizes using an Markov decision process (MDP) model.

Finally, delivery time of tasks has negative effect on SP. A task that is delivered earlier on

average, e.g. after one time step, increases the SP as it increases cost of missing one time step. In

this model, instead of expected task benefit, I estimate storage penalty for one time step by dividing

the sum of historical task values by the sum of their delivery time. This mechanism follows two

objectives: the sum of net values is first divided by the number of tasks and expected delivery time.

To retrieve the states’ history on tasks, a function H links an element to its task history at the

next time step:

H : e
L(e,t+1).sector
����������! {(Ti, Pi)}

where t is current time, T is a historical task linked to next state and P is its corresponding path.
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The probabilistic estimation of storage penalty for task T 0 is:

SP(e, T 0) =
p⇥

P
(T,P )2H

[V(T, P.time)� T.size⇥ ⇣c(P )]

(capacity(e)�De(e) + T 0.size)
P

(T,P )2H
�t

(3.22)

where :
2

4
X

(T,P )2H

[V(T, P.time)� T.size⇥ ⇣c(P )]

3

5 :

is sum of historical profit for picked up tasks at next state

[(capacity(e)�De(e) + T 0.size)] : is normalizing factor for memory (1 or 2)
2

4
X

(T,P )2H

�t

3

5 : is normalizing factor time as sum of historical task delivery times

where e is a potential element to pick-up task T 0, �t = P.time � T.init + 1 is the calibrated time

difference between task pick-up and task delivery. In this chapter, the above value is called marginal

SP.

Cumulative value of a federation over multiple time steps shows the accuracy of our estimation

accuracy because right decisions on task storage and delivery depends on accurate estimation of

opportunity cost. I run the operational model to validate the estimation accuracy of our estimation in

Eq. 3.22. For tractable results, lets start with simple task-value and communication cost functions

(cf in Eq. 3.4). The value function for tasks varies between 1 and 0.5 for each task, decreasing

linearly in time (expiration time = 5 steps, penalty = �0.2). The communication cost is assumed

to be fixed (cf = 0.6). For benchmark values of SP, I compare fixed values for SP on the same

operational model and select the values that achieve best results in overall: SP = 0.4 and SP =

0.8. The former is best for federated models with fewer communication opportunities while the

latter achieves better results on more inter-coupled elements. Intuitively, it is similar to having

more delivery opportunities by increasing the opportunity cost of storage. I further apply stochastic
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Fig. 3.15: Deterministic: federation value with deterministic communication cost cf = 0.6, f 2 F for marginal case (see
Eq. 3.22) vs fixed storage penalties SP = 400(relative : 0.4) and SP = 800(relative : 0.8) suggests higher collective
value by using marginal SP. Designs are selected from Table 3.5. A higher value reflects more accurate estimation of
opportunity cost of storage.

communication cost with similar expected value (E[cf ] = 0.6) to this operational model. In the

stochastic model, versus the deterministic model, lower estimation SP = 0.4 achieves relatively

better results.

Figure 3.15 draws federation value using marginal SP versus fixed costs. The marginal method

achieves 4 to 10% improvement on average for the deterministic case. Fig. 3.16 shows the results

for the stochastic model.

3.6.3 Communication Cost

For a link, communication cost belongs to its destination node. In the operational model, communi-

cation cost is assumed to be equal for all links shared by a federate at each time step. This section

introduces an adaptive mechanism for realistic modeling of self-centric cost function.

A q-learning approach is applied to cost function where q-state represents a network topology
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Fig. 3.16: Stochastic: federation value with stochastic communication cost 0 < cf < 1.1, f 2 F (see Fig. 3.17 and
caption for Fig. 3.15)). The samples in a box include 30 seeds where the upper whisker extends to last datum less than
Q3+3*(Q3-Q1), lower whisker extends to last datum greater than Q1-3*(Q3-Q1). Beyond the whiskers, data are consid-
ered outliers and are plotted as individual points. Standard deviation of samples range between 0.006 to 0.016.

Fig. 3.17: Communication cost random variable with
triangular distribution for stochastic cost in Fig. 3.16
where lowest value (leftmost) with positive probability
is cf = 0.1 and highest (rightmost) value is cf = 1.1.
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and q-action represents the cost and general updating mechanism of:

Q(st, at) (1� ↵)Q(st, at) + ↵[R(t) + � ⇤max
↵

Q(st+1, at+1)] (3.23)

where st is the state, at is the action, and R(t) is the reward at time step t, ↵ is the learning factor

between 0 and 1 (exploitation vs exploration), and � is the discount rate between 0 and 1 in time

which models discounted future rewards. ↵ = 0 means Q value is never updated and ↵ = 0.9

means that learning happens quickly. Also max↵ finds the most attainable reward in the next state

following the current state. In a FSS, I select ↵ = 0.8 and � = 0.9 with a random selection of

actions with probability r = 0.05. In this model a state remembers network topology while an action

represents the communication cost (cf ). More detailed explanation of the applied q-learning model

is defined in Appendix. C.

For a realistic model, I need to resolve three compatibility issue between FSS and q-learning:

1) temporal distance between actions and reward in FSS (task pick up and tasks delivery) 2) in-

terdependency between consecutive times steps in FSS, and 3) continuous cost function (action

space). The first and second are resolved using discount effect on rewards and path-dependent ef-

fect (inertia) on actions. In other words, rewards are linked to closest actions with an discount rate,

and a federate selects an action for multiple time step (e.g. 3) and changes it marginally (upward

and downward). Both assumptions fit the realistic cases of pricing behavior by agents. For the third

issue, I update Q-value using a Gaussian distance function among state-action pairs.

The cumulative values for federates are used to compare results. The operational model applies

the marginal SP introduced in Sec. 3.6.2 in comparison to baseline cost functions: cf = ✏, cf = 0.6,

cf > 1, cf = triangular (see Fig. 3.17), where cf = ✏ represents CES because zero communication

cost implies that all resources are available to all federates without inter-federate cost, i.e., the

federation operates as a monolithic design. cf = 0.6 is fixed communication cost which implies
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FES where communication cost accounts for up to 60 percent of task value on each path. Finally,

cf > 1 results in IES when no inter-federate communication exist due to link cost exceeding a task

value. In this case, each federate works as a separate monolithic design.

Figures 3.19 to 3.22 show the collective values by federates before and after switching a cost

function from baseline (CES, FES, random FES, and IES) to adaptive case of FES. With initial CES,

the effect of switching to adaptive cost is positive for the federate with adaptive cost and negative for

others. The intuition is the adaptive federate has access to the network’s resources for free while

obtain value for sharing it’s own resources with other federates. With initial IES (cf > 1), adaptive

cost increases value for all federates as other federates have access to new resources while the

adaptive federate also obtains additional value by sharing its unused resources (see Fig. 3.20).

With initial FES case with fixed cost (cf = 0.6), adaptive cost benefits the switching federate itself

and slightly benefits other federates. Here, similar to IES, the adaptive federate finds the best

cost function for sharing its resources which might also benefit other federates (see Fig. 3.21).

Lastly, with initial random FES, all federates benefit from switching to adaptive cost function by one

federate (see Fig. 3.22). In sum, switching to self-centric approach (aka adaptive cost function) is

all but certain choice for an individual federate.

By switching cost strategy by all federates one by one, total value changes according to circles

shown in Fig. 3.18. A circle shows federates with their cost strategy, a small black square shows an

adaptive federate, and a red triangular shows a minimum-cost resource by a federate. The number

of adaptive federates increases from left to right for each design. In IES, addition of an adaptive

federate always improves the total revenue. In FES with fixed value (cf = 0.6), the total revenue

also increases by adding more adaptive federates. In CES, the adaptive cost function reduces the

total value. In sum, self-centric behavior by federates shall reduce collective value in CES or FES

with relatively high level of sharing resources.
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Fig. 3.18: Federation value by switching cost function to adaptive cost from left to right in each design where cf = ✏
represents CES, cf = 0.6 is FES, and cf > 1 represents IES. The values are averaged values during 10000 time steps
across 100 seeds for every circle.

Fig. 3.19:
Average federate value in CES (cf = ✏ ⇡ 0)
when one federate switches to adaptive cost func-
tion: a) adaptive federate: value significantly in-
creases the adaptive federate, b)non-adaptive

federate(s): value decreases for other federates.
The values are averaged values during 10000
time steps across 100 seeds for every circle.



www.manaraa.com

68

Fig. 3.20:
Average federate value in IES (cf >
1000 [relative : 1] )) when one federate
switches to adaptive cost function: a) adaptive

federate: federate value significantly increases
for the federate with adaptive strategy, b)non-

adaptive federate(s): federate value significantly
increases for other federates. The values are
averaged values during 10000 time steps across
100 seeds for every circle.

Fig. 3.21:
Average federate value in FES (cf =
600 [relative : 0.6]) when one federate
switches to adaptive cost function: a) adaptive

federate: federate value increases for the
federate with adaptive strategy, b)non-adaptive

federate(s): federate value increases for other
federates. The values are averaged values
during 10000 time steps across 100 seeds for
every circle.

Fig. 3.22:
Average federate value in random FES (E[cf ] =
0.6) when one federate switches to adaptive cost
function: a) adaptive federate: federate value in-
creases for the federate with adaptive strategy,
b)non-adaptive federate(s): federate value in-
creases for other federates. The values are aver-
aged values during 10000 time steps across 100
seeds for every circle.
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3.7 Simulation Study

This section presents and compares numerical results of the operational model and pricing mech-

anism in an FSS application. The application simulates the mechanisms for 10000 time steps and

300 seeds1. For simplicity, this model assumes equal data size and value functions for tasks, multi-

ple destination nodes and different sources when storage size of an element and the capacity of a

communication link are twice the size of a task data. Numerical results of the auctioneer are com-

pared using five metrics: collective value for a federation, individual value for a federate, number

of shared links among federates, averaged relative bids by federates, and averaged prices by the

auctioneer.

(a)

(b)

Fig. 3.23: Effect of the pricing mechanism on cumulative collective values in five selected designs. The pricing mechanism
improves: (a) collective value as the total value achieved by all federates and (b) federate value: as the individual value
achieved by a federate. In a selected design, left points show the values by adaptive federates without pricing auctioneer
(w/o Auc.) when right points are the values after implementing the pricing auctioneer (w/ Auc.). Each circle is averaged
value of 300 simulation runs and y-axis is normalized by a 103 of maximum task values.

First, I discuss the effect of adaptive federated bids and auctioneer’s prices on the collective

value in a federation. In Fig. 3.18, an inclusive circle is a federation, a black square is an adap-

tive federate, red triangles are federates using marginal cost pricing, purple stars are independent
1The availability of tasks in the contextual model and random actions adopted by a learning federate plus the q-learning

model depend on a random seed.
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federates with no sharing of resources, and blue hexagons are federates using an arbitrary fixed

cost function. Accordingly, a circle with all red triangles represent full sharing of resources following

a centralized strategy or value of CES, a circle with purple stars represents the value of IES, and

a circle with all black squares shows all adaptive federates in FES. Adding an adaptive federate

always improves the collective value for IES and reduces collective value for CES. For FES, the

effect of an adaptive federate depends on the state of exchanging resources across a federation.

The effect of the pricing mechanism on collective and individual values are shown in Fig. 3.23.

Fig. 3.23a shows the collective effect of the auctioneer and the Fig. 3.23b disaggregates above

values for each federate. The pricing mechanism has positive effect on collective values and most

individual cases.

(a)

(b)

Fig. 3.24: bids and prices for exchanging communication resources with and without pricing auctioneer (w/ Auc. vs w/o
Auc.): (a) federated bids: on upper row are submitted by adaptive federates, (b) b) transaction prices: on lower row show
the actualized prices on sharing links among federates. The bids and prices are normalized by maximum task value.

Adaptive bidding depends on the expected value of state-actions and a few parameters in q-

learning that contribute to the differences among values in various topologies, computational de-

mands and states. In general, a higher bid can potentially deliver higher value but results in a
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lower chance of resource exchange. The plots in Fig. 3.24 distinguish some patterns of bidding

and actualized transactions on exchanging resources. A network topology (i.e. design) affects the

average bids by federates. In designs with scarce resources such as D.I (Design I) and D.II,

bids and prices are higher compared to designs with more inter-coupled elements, path alterna-

tives and higher competition among federates. For instance, adding a geosynchronous satellite to

D.III (D.IV) reduces the level of bids and prices by more than 20%. In addition, average prices

are between 18–50% percent lower than average bids. In a federation with adaptive bidding, ex-

pected bids and prices are lower than those with a pricing mechanism. The proposed mechanism

increases actualized prices in designs with scarcer resources (D.I and D.II) more than other

designs. Finally, introducing more federates while holding total number of elements constant in-

creases competition and reduces the level of bidding in D.III compared to D.II. In these cases,

prices remained within the same range while federates reduced bids.

In the proposed mechanism, the auctioneer ensures an expected value for a federate by ex-

changing resources among federates (see Sec. 3.5). In a federation of task processing elements,

sharing resources results in more processed tasks and higher value for federates. The averaged

number of shared resources across a federation emphasizes the effect of pricing auctioneer on

collective sharing behavior across the federation. In Fig. 3.25, the upper row shows the average

number of shared resources per time step. The pricing auctioneer increases sharing links by 4–16%

for all designs even with higher prices per exchange of resources. The lower row of box plots shows

the distribution of collective values for 300 simulation runs. The pricing auctioneer increases the

collective value, reduces the standard deviation in collective gain and closes the gap between FES

and CES in terms of economic efficiency.
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(a)

(b)

Fig. 3.25: Average number of shared resources and distribution of collective value with and without pricing auctioneer (w/
Auc. vs w/o Auc.): (a) shared links: on upper row show the averaged number of shared links among federates per time
step, (b) value distributions: on lower row show the distribution of collective value in comparison to maximum possible
value (centralized solution). The samples shown in box-plots include results from 300 simulation runs (seeds) where the
upper whisker will extend to last datum less than Q3+3*(Q3-Q1), lower whisker also extend to last datum greater than
Q1-3*(Q3-Q1). The collective value is normalized by 103 of maximum task values.

3.8 Discussion and Conclusion

This chapter developed a mechanism to suggest prices for sharing resources in a federated TNE.

The network included processing, communication and storage resources, cost functions and strate-

gic behavior by federates, and temporal demands for computational tasks. This chapter contributed:

structural and behavioral models that define and formulate the objective function in a federated net-

work, an operational model that optimizes the combinatorial problem of task scheduling and routing

in a network, and a pricing mechanism that increases exchanging resources and collective value in

a federation.

For research questions detailed in Sec. 3.2.1, this chapter introduced a MILP model for schedul-

ing, storing, and retrieving tasks and routing processed data in an multi-source and multi-hop TNE

with a centralized value function for the federation and dynamic topologies for satellites and commu-
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nication links. The model assumes a trusted and third-party auctioneer with knowledge of available

resources across the federation at each time step. The proposed model is value-maximizing in

terms of a defined collective value as the objective function to find variables for processing (bi-

nary), storing (binary) and transmitting (integer) data. The operational limitations are defined by

technical and financial constraints on resource capacity, payments, and costs for exchanging re-

sources among participants. The operational solution is cost-minimizing for each federate in terms

of delivering data to destination(s), accordingly, the solution is economic efficient, Nash equilibrium

and Pareto-optimal as it solves a combinatorial problem using linear program. In this model, no

federate has incentive to defect the routing solution by the auctioneer without utility cost. However,

the computational cost of solving MILP model is exponential in time depending on number of ele-

ments in TNE. For optimization, a non-linear sequential least-square programm (SLSQP) is used

to sequentially and iteratively find the maximum price for each federate while the objective function

enforces financial constraints of the operational (MILP) model. Assuming rational strategic bidders,

an reinforcement learning approach (q-learning) was used for discrete and adaptive bidding. For

simulation model, multiple FSS designs were selected out of hundreds of possible designs from a

Pareto-optimal line of cumulative value of a federation. The intuition is rational system designers

will use the same logic to design their systems.

For validating the mechanism, multiple collective metrics were selected including average num-

ber of resource exchange, expected value for federates, and average prices for shared resources.

Simulating the mechanism for the selected designs during thousands of time steps showed higher

expected value for federates and higher prices for sharing resources. Higher prices in combination

with higher resource exchange implies more efficient solution with higher incentive for sharing re-

sources across the federation. Future researches in federated networks may investigate auctions,

e.g. two-sided auctions with bidding behavior by participants (source, relay, and destinations), ef-

fects of adversary behavior by untruthful and strategic auctioneer, complexity of operational solution
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in time for scaling purposes, and efficient solutions for simultaneous pricing and resource allocation

in a federated network. The next chapter investigates two-sided auction-based algorithms in a more

general federated TNE.
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Chapter 4

Auction-based Algorithms for Resource Allocation in

Federated Networks

This chapter investigates auction and allocation mechanisms to drive behavior of decentralized components to-

wards collective-efficient metrics. Multiple mechanisms are formulated for networked systems with distributed

resources and entities with decentralized authority and control over resources. In particular, I investigate

auction-based algorithms for exchanging resources and combinatorial routing in a federated network. A cen-

tralized and trusted auctioneer is introduced for routing and resource allocation and five auction-based algo-

rithms are formulated: 1) linear program with binary search for prices, 2) first-price reverse-bid double auction,

3) non-linear searching for prices, 4) online algorithm with closed-form solution for prices, and 5) virtual pricing

in a multi-source routing. The operational model and auction-based algorithms are implemented in a feder-

ated network with double-sided bids for link prices and path cost. The results are evaluated using extensive

simulation runs in hundreds of network topologies with different configuration of elements and federates. The

introduced metrics for numerical validation include normalized bids and prices, collective values, and conver-

gence rates.
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4.1 Introduction

In a “system-of-systems” or “collaborative systems”, a cyber-physical standard for communication

language among components exist. The operational and managerial independence of systems

creates an extendible and nonexclusive core that incentivizes decentralized systems towards col-

lective metrics. Collaboration seeks balanced access to information by every component that needs

it, providing information only to those with proper authorization. In dynamic collaborative models

such as a federated system with computational resources and tasks, task-based access grants

access to resource by federates that are involved in a computational mission and team-based ac-

cess is also applicable to dynamic coalitions and missions oriented around multiple tasks during

multiple time steps. A collaborative scheme with resource allocation and an access control mech-

anism shall also hold against adversarial behavior by members and non-members. Incomplete

information game frameworks are used to model the tradeoff between trust, privacy, and security

against threats in networked systems [13,142,143]. Task processing networks of elements (TNEs)

such as clouds, satellites, robotic teams or blockchain are networked structures with access control

mechanisms for collaboration among multiple systems and participants.

In a network with decentralized entities and components, a global optimum and value-maximizing

approach without an operational and financial agreement among participants is not a viable solu-

tion to resource allocation. Nonetheless, decentralized value-maximizing approaches executed by

non-collaborative components result in sub-optimal solutions. In other words, independent oper-

ations by federates (e.g. a platform for cloud system or a constellation of satellites) is not eco-

nomically efficient while a centralized solution is not feasible assuming distributed control, authority,

and (potentially) design of resources. The combinatorics of resource exchanges among tasks and

resource owners call for efficient and effective mechanism design, possibly, for financial agreement

and collaborative resource allocation. These resources include on-board computational and com-



www.manaraa.com

77

munication resources in a TN. A targeted operational solution with resource exchanges among

components fits between the value-maximizing global solution and the independent solution given

for a set of computational elements. In this chapter, the operational model involves allocating re-

sources for processing tasks and routing data to destinations in a network.

4.1.1 Auctions

An agreement for allocating resources and inter-federate financial exchanges is a subject of an

auction-based mechanism in a network with decentralized components or a federation. Auc-

tions are used to allocate bandwidth in networks, schedule tasks in distributed systems, share

cloud resources among providers, execute missions by robotic teams, and in general, achieve an

auctioneer-level goal (e.g. the global welfare) by discovering private preferences of heterogeneous

components and willing participants and using them in resource allocation. In a coalition or federa-

tion, a participant with financial incentive to exchange its resources with others is a potential bidder

in an auction-style operational model. An auction mechanism includes a form of submission by

participants (i.e. bidding language), outcome evaluation, and winner selection. The desirability of

an auction depends on general metrics of incentive compatibility, individual rationality and Pareto

optimality. The collective value or social welfare reflects a global utility function that numerically

assesses the auctioneer’s outcome. In an auction, the individual utility function for a participant

is usually defined as the difference between its valuation (e.g. a quasilinear function of a global

valuation function) and clearing price for winner (buyer or seller). In sum, each resource is ought to

be shared by a willing seller with least known valuation for that resource and allocated to the willing

buyer with most valuation for it.

Accordingly, a designer of an auction mechanism shall consider decentralized objective func-

tions, economic efficiency, adversarial security, bidding language and computational complexity.

In a network with distributed components, computational challenges include solving combinato-
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rial routing problems based on bidding preferences by resource owners and users and pricing

resources based on those constraints and alternative solutions.

4.1.2 Federations

In Star Trek, Starfleet’s policy to not interfere in norms of a culture abolished the apprehension and

distrust between cultures and left them only to join and grow the world of federation. The post-

scarcity federation doesn’t rely on money but operates on individual freedom and abundance of

resources (on demand in excess of basic needs) where conflicts are dealt with through distributed

resource allocation, interactive consensus, and higher-level political mechanisms. In terms of laws

in the federal system of Starfleet, a governance layer above any nation or component had authority

on high-level mechanisms such as energy allocation, foreign relation, and accounting while individ-

ual planets and colonies retained their sovereignty. Laws were generally made “as close to home

as possible” at individual planets and colonies by various species [144–147].

4.1.3 Research Problem and Objectives

In mechanism design for a federated network, multiple challenges exist regarding the objective,

efficiency, language, and computational complexity of resource allocation. First, a centralized auc-

tioneer simplifies resource allocation, pricing, and payment across a network but increases the

communication overhead among federates and the auctioneer. Second, a submission language

must reduce the auction costs in communication overhead, convergence time, and computational

challenge of bidding by federates. Further, an operational model may allocate resources given

literal constrain announced by bidders or maximize values with constraint relaxation and compen-

sate affected bidders using an incentive-compatible mechanism, or use virtual pricing to avoid literal

constraints in combinatorial resource allocation.

This chapter investigates and implements multiple auction-based algorithms for combinatorial
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resource allocation (i.e. routing) in a federated TNE. The research objectives pursue performance

of auction-based algorithms in a federated network with adaptive bidding by selfish and non-

cooperative participants. An application with an operational model for routing, an auction-based

environment, and adaptive bidding by federates is developed then performance of the auction-

based algorithms, driven from or modified based on existing models in literature, are compared

using the application. This chapter is focused on performance of algorithms with respect to eco-

nomic efficiency, behavioral stability, computational complexity, and auction time. I assume a net-

worked structure of elements with pre-defined technical capacity, task value and also assumes

selfish (and non-colluding) behavior by federates to assess the performance of proposed auctions.

The scalability of the proposed algorithms are evaluated assuming a growing number of elements

and federates. I assume a networked structure of elements with pre-defined technical capacity, task

value, a trusted third-party auctioneer, and selfish (and non-colluding) federates. In addition, I in-

troduce a trusted third-party auctioneer for pricing communication resources in a federated network

to simplify and optimize routing, auction language and information exchange among participants

and the auctioneer and explore in depth the effectiveness of a mechanism for coordination and

efficiency in a networked system.

Sec. 4.2 reviews relevant literature in auction mechanism design in networks and combinatorial

problems. Sec. 4.3 discusses assumptions, notations and an operational model of routing with tech-

nical and financial constraints. Sec. 4.4 formulates and illustrates the five auction-based algorithms

for pricing and allocating resources. Sec. 4.5 introduces static and dynamic metrics in simulation

study and shows analytical results for static model and simulation results of collective value, bids,

and prices for dynamic model. Sec 4.6 discusses static and dynamic results and statistically an-

alyzes those algorithms in terms of computational and performance metrics including: collective

value for economic efficiency, an auction’s runtime for computational cost, and convergence rates

for the auction’s speed.
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4.2 Related Literature

Scheduling tasks and allocating computational resources in networks by an centralized auction-

eer is usually a combinatorial problem that can be modeled using Linear Programming (LP) mod-

els [148, 149]. In combinatorial auctions, bidding by participants and winner selection by the auc-

tioneer are dealt with as NP-complete or NP-hard problems. Auction mechanisms applicable to

combinatorial items include sealed-bid auction (e.g. first-price or reverse-price), Vickery-Clarke-

Groves (VCG) mechanisms, market-clearing price, online auctions, and iterative auctions. The

iterative and online schemes usually simplify communication language between the auctioneer and

bidders by gradually disclosing information and adapting resource allocation to dynamic environ-

ments. For instance, in iterative ascending-bid auctions, buyers submit bids sequentially to the

auctioneer and the auction terminates once no buyer bids a higher price. Reversely, in iterative

descending-bid auctions, a seller reduces its price until a buyer accepts the most recent price. In

online auction-based algorithms, a seller offers multiple units of an resource while bidders appear

sequentially which leads to lack of information on valuation by buyers and lack of information on

the next bids by the seller [150]. These sequential steps reveals private information of participants

towards a collective metric and reduces the complexity of submission and winner selection. In com-

binatorial auctions (CA), other challenges include submission by participants, winner determination

and cooperation among participants [72]. For bidding, the submission language must reduce the

information overhead and auction time. Winner determination must be transparent to simplify a

bidder’s understanding of and trust in the mechanism. In terms of computational cost, submission,

pricing, and winner selection shall be scalable in most real-world applications.

In literature, two types of auctions are proposed for data-routing in wireless networks: 1) a

source bids and an auctioneer allocates the path and 2) data is a bidder on time slots for access

to a relaying hop [71]. For routing data, Zhang et al. proposed a reverse-auction mechanism for
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cooperative relaying of data when at each hop, a seller (source) node selects the next buyer (desti-

nation) [151]. Another reverse-auction model, called ABIDE, is employed for routing in peer-to-peer

mobile networks when a relay-broker node is financially incentivized by other peer nodes [152].

In [153], a game-theoretic VCG mechanism is developed for efficient and truthful routing in mo-

bile ad-hoc networks. Grosu et al investigated application of pricing mechanisms to achieve an

social optimum in a TNE when elements reveal their processing power and a mechanism assigns

payments to resource owners [154]. In distributed systems, a negotiation mechanism for suppliers

and consumers is proposed for cloud systems that use a updating algorithm for prices, namely

trade-off, that changes prices while keeps expected utilities by agents [155]. A pricing mechanisms

uses mixed-integer nonlinear program (MINLP) to model optimizing task accuracy via assignment

of heterogeneous resources. An inter-agent coordination protocol is proposed to maximize overall

team goal of mission accuracy in task processing and routing. A contract-based multi-agent mech-

anism is also investigated to allocate path resources and achieve agreement among networked

elements [156].

The VCG auction is a general form of second-price Vickrey auction to incentivize truthful be-

havior by bidders which operates by separating a winner’s clearing price from its bid [157–159].

An iterative VCG-based mechanism with random update of prices and bids is applied for allocating

resources among multiple players [160]. For pricing the shortest path in networks, assume e as

the weight (cost or time) associated with a link l in network G. The Vickery ’s payment for links on

shortest path is defined as:

p : (x, y, l)!

8
>><

>>:

c(x, y;G|e=1)� c(x, y;G|e=0) l 2 {links on shortest path}

0 otherwise
(4.1)

where c(x, y,G|e=0) is the cost of data transmission from x to y using shortest path when e = 0 and

c(x, y;G|e=1) as the cost when link associated with e doesn’t exist. The price is the opportunity
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cost of removing links on the shortest path.

In a network with known routes and an arbitrary topology, the Progressive Second Price (PSP)

auction can achieve incentive compatibility in bidding for the links along a route while all users will

be truthful regardless of the bids by other users [83]. An iterative auction can simplify communica-

tion language between an auctioneer and bidders by gradually disclosing information and adapting

to dynamic environments [72]. Using an iterative scheme and dual optimization, an iterative mech-

anism updates prices and allocates resources to maximize utility function for all participants in a

network [61]. In [149], two approaches are applied to a virtual machine allocation problem (VMAP).

In one method, linear program (LP) relaxation and randomized winner selection are employed sim-

ilar to the mechanism introduced in [148]. In a second approach, an approximate solution to an

auction is found assuming a determined (single-minded in terms of bundle) bidder [161]. In a

Bayesian approach, supply constraints are satisfied only in expectation (ex-ante) and the objective

function is linearly separable over buyers (e.g. welfare or total revenue). In a classical Bayesian

auction, expected revenue is optimized by allocating resources to self-interested participants with a

known distribution of preferences [162]. In the case for multiple buyers, a general approach with no

assumption on value function, type distribution, and constraints are proposed to reduce the mech-

anism design to single-buyer subproblem [163]. By this approach, the decisions are optimal for a

bidder and also coordinated among buyers because of supply constraints.

Online auctions are introduced for dynamic resource allocation when an auctioneer collects bids

at any time and can allocate resources immediately [71]. Online auctions are explored for truthful,

strategy-proof, individually rational and budget-balanced sharing of spectrum channels between

primary and secondary users in wireless networks [164]. An heuristic online algorithm with mono-

tonic pricing is proposed for channel allocation and end-to-end routing in multi-hop network [165].

In terms of a behavioral model for federates in a network, bidding strategy and possible adversarial

behavior affects functionality and efficiency of an auction mechanism. Bidders submit bids concur-
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rently or iteratively. In the former, conflicting bids fail to obtain resources while in sequential bidding,

a bidder adjusts its bid being informed of other bids or resource allocation at each iteration [166].

Reinforcement learning is used for modeling behavior by participants during an iterative or online

auction [44,167–169].

A federated network is a federation with networked elements, computational resource owners

and resource users with the possibility of interdependency among federates in terms of exchanging

resources and information [22]. With operational and managerial independence of systems, a fed-

erated system relies on an extendible and nonexclusive core that incentivizes federates towards an

adaptive and collective goal while holding its own structure against adversarial and selfish behavior

by federates and exogenous systems. In the 1990s, a generic federation layer was proposed to

unify application design, reuse and automation of system design in Web-based application sys-

tems [170]. Today, the definition of federated systems extends to cloud systems, low earth orbit

(LEO) satellites, swarms of drones and unmanned aviation, robotic emergency teams, etc. [15–19].

In federated networks such as a connected set of satellites, or a virtual machine network in cloud

systems, auctions are designed for path finding, sharing computational resources, data transmis-

sion, etc. These networks usually face dynamic topologies, limited on-board resources and strin-

gent constraints and delay in communication and data transmission [171]. In a federated auction,

winners are determined by an operational model or routing algorithm which allocates tasks to ele-

ments and resources to tasks. In this regard, the most relevant auction designs are implemented

in multi-hop wireless networks. In these networks, a message is distributed from a source through

multiple relay nodes to a destination where source nodes are buyers with payments to relay nodes

as reward for their cooperation.

In a federation, mechanism design is also a viable solution for resource allocation among dis-

tributed entities. For cloud platforms, Integer linear program (ILP) and optimization mechanisms

perform allocation and pricing for virtual machines (VM) [39,45]. In [39], Rebai investigates mech-
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anisms for allocating and pricing distributed resources in a federated VM network and proposes

an exact federation algorithm to maximize revenue and minimize cost for cloud providers. The ILP

model addresses the NP-hard problem of resource allocation where an auctioneer guarantees a

competitive social welfare [45, 172]. In [173], a cloud broker (CB) acts as a beneficial mediator

for both cloud service providers (CSP) and end-users compared to current situation with public

cloud providers (PP) such as Google and Amazon. In a similar framework, auction mechanism

can achieve higher profit for cloud providers, higher utility for end users and optimal allocation

of resources across federation [174]. In a FSS model, Pica and Golkar evaluate a sealed-bid re-

verse auction pricing scheme for exchanging underused resources among owners and third-parties

where a satellite either directly connects to a ground station or seeks a data service (e.g. relaying)

to overcome limited onboard data storage [85].

4.2.1 Research Assumptions and Questions

The research in this chapter follows these assumptions:

A1 a network of computational elements (sources) with limited communication resources con-

necting those elements to destination(s) in a multi-hop and multi-source network

A2 a federated architecture of elements with distributed resources for each federate (auction

participant), inter-federate communication capability, and decentralized objective functions for

participants

A3 a trusted third-party auctioneer/LP-solver with knowledge of available resources at each time

step

A4 a double-sided auction mechanisms run by the auctioneer with adaptive seal-bids by partici-

pants at each time step
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A5 in this chapter, the proposed auction-based algorithms may not rely on exhaustive solutions

to routing in a federated network because MILP model is assumed to be computationally

expensive

Multiple mechanism have been developed for scheduling and routing problem in wireless ad-

hoc networks, spectrum secondary allocation, and cloud systems. In an ad-hoc peer-to-peer mobile

network, a network topology of mobile peers cooperate to achieve higher value through exchanging

resources [152]. The auction-based approach increases number of service providers in a network

and resource exchange among peers. While the mechanism considers a set of query issuing, bro-

kers, data provider, and relaying MPs, the proposed mechanism doesn’t consider multi-functional

MPs with all capabilities by Asm. A1. In addition, the model assumes that each node acts indepen-

dently and not under an alternative cooperative scheme, which is in contrast to Asm. A2. In [166]

and [165], online and dynamic auctions are explored for a secondary network (SN). In the former

work, multiple wireless service providers (WSPs) compete for available spectrum band from a pool

of spectrum. Nonetheless, this work doesn’t hold the Asm. A1 in network connection of elements

and communication resources. The latter work uses a topology for secondary network with multi-

hop and end-to-end routing. Their method is similar to the research problem in the sense that

an auction participant is a network of distributed elements by Asm. A1. Nonetheless, this work

finds pricing for communication channels shared among SNs to find the optimum combination of

end-to-end connection. This doesn’t consider using communication links and computational ele-

ments using inter-network resources assumed by Asm. A2. In addition, the solution proposed by

the authors doesn’t hold for double-sided bids by Asm. A4. The VCG mechanism for pricing links in

routing application, formulated in [160], is computationally expensive for our application as for every

existing link a routing solution shall be computed. Instead, the chapter is looking for mechanisms

that require minimum number of routing and re-routing in networks. In [39, 148, 149], the solutions

to pricing VMs in clouds also doesn’t apply to problems in this chapter as they doesn’t hold against
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the Asm A1 for limited communication resources in a multi-hop network.

The research question addressed in this chapter is: How to formulate auction-based algorithms

to incentivize inter-federate exchange of resources and drive decentralized components toward bet-

ter collective metrics such as higher value and lower computational cost?. The research question

can be disaggregated into:

Q1 How to define a two-sided auction in using an operational MILP model for combinatorial rout-

ing and scheduling problem in TNE?

Q2 How to find the most efficient prices that satisfy bidding constraints and maximizes expected

values for federates (e.g. binary search)?

Q3 How to formulate well-defined auction formats (e.g. first-price and second-price sealed-bid

auctions) for the combinatorial problem of routing and scheduling?

Q4 How to reduce computational cost of an auction for finding efficient prices?

Q5 What are the collective metrics for evaluating auction algorithms in a federated network?

Q6 How auction-based algorithms with lower complexity in time affect the long-term performance

of the auctioneer?

Q7 How virtual pricing with balanced payment among sellers and buyers but non-equal prices for

them affect the ultimate performance of the auctioneer?

4.2.2 Research Methodology and Design

In this chapter, the following steps address the research question:

S1 defining structural and functional components of a federated network of task-processing ele-

ments (TNE)
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S2 formulating the operational model of a centralized RAS based on the value and cost functions

of federates and resources

S3 formulating three auction-based algorithms from literature as the baseline cases

S4 developing two auction-based algorithms for pricing communication resources in a multi-hop

and multi-source TNE

S5 developing simulation study, metrics, and test cases to validate the effectiveness of the pro-

posed algorithms

In this chapter, a general model of federated networks is formulated. In step S1, a TNE is intro-

duced with nodes as resources, multiple resource owners called federates, communication links,

and technical assumptions on data and computational capacity. In step S2, scheduling and routing

problem is formulated using MILP model where its solution to financial constraints is calculated.

Step S3 formulates three auction-based algorithms including first-price reverse-price auction, bi-

nary search for price with iterative solutions to linear program, and non-linear algorithm for pricing

resources. Step S4 develops two new algorithms with closed-form solution and minimum computa-

tional cost for the auctioneer. For a simulation study, an application combines above modules and

multiple combination of TNE configurations are used to put into test the hypothesis in this chapter.

For testing the introduced method, 240 designs are selected that covers two or three federates with

different network sizes and topologies. Finally, in step S5, multiple collective metrics are introduced

including bids submitted by federates, actualized prices for exchanging resources, convergence

rates for algorithms, and an additive function for the global utility in a federation.

4.3 Operational Model

In the auction-based resource allocation, exchanging resources among federates is achieved through

an auctioneer equipped with an operational model. A network topology represents computational
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tasks and destinations with nodes, communication resources with edges and federates with colors.

Assume N tasks and M elements. The operational model is run at each time step when new tasks

are available for processing. T = {Ti} shows set of N tasks. The value of a computational task is

defined using a value function:

V(T ) : T 2 T! VT 2 R

A task is also associated with a data size which is retrieved by data function:

D : T 2 T! datasize 2 Z+

and E = {ej} represents set of elements, F = {fk} is set of federates and Lij = {ln} is set of

available links between elements ei and ej . A function F retrieves the federate owning an element,

sharing a link, and processing a task:

Fe : e 2 E! f 2 F

Fl : l 2 L! f 2 F

Ft : T 2 T! f 2 F

and the owner of a link is defined as the destination element of data on the link or receiver element:

E(lij) : l 2 L! ej . At each time step and with availability of new tasks, the auctioneer runs auction

A. A federate f submits bids for sharing its links with other federates and path cost for delivering

its computational tasks, represented by functions:

Bl : f 2 F! (linkbid 2 R+ < VT )

Bp : f 2 F! (pathbid 2 R+ < VT )
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respectively. The auctioneer, by running an auction, responds to federates with prices for links:

P : (T, l)! linkprice 2 R

A mixed-integer linear program (MILP) for operational model of orbital network or satellites was

introduced by authors in Sec. 3.4. This section formulates a MILP model for solving multi-task

processing and multi-hop routing in a federated network. The operational solution results in binary

variables of processing computational tasks by elements (xproc), integer variables of transmitting

data by communication links between elements (xtrans), binary variables of resolving tasks by

destination elements (xresolve):

xproc : (T 2 T, e 2 E)! {0, 1}

xtrans : (T 2 T, l 2 L)! Z+

xresolve : (T 2 T, e 2 E)! {0, 1}

We introduce a cost function for data transmission accordingly:

C(T, l) =

8
>><

>>:

✏l Fl(l) = Ft(T )

P (T, l) otherwise

where ✏l << VT is cost-of-energy (see [153]) of using a communication link l and is significantly

smaller than the processing value of a task.

An auctioneer actualizes financial exchange among federates by pricing resources under a
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mechanism. A value function finds the value of auctioneer for a federate f :

V(f) =
X

T :Ft(T )=f

V(T )

+
X

T :Ft(T )=f,

X

l:Fl(l) 6=f

xtrans(T, l)⇥ C(T, l)

�

X

T :Ft(T ) 6=f

X

l:Fl(l)=f

xtrans(T, l)⇥ C(T, l) (4.2)

which sums value of processing tasks and that of sharing resources minus payment to other feder-

ates.

For simplicity, I use value for collective value in a federation. In the operational model, the

objective function maximizes value of a federation:

find:xproc(T, e), xtrans(l), xresolve(T, e)

maximize:
X

f2F

V(f) (4.3)

subject to:

Bp(Ft(T )) �
X

l2L

xtrans(T, l)⇥ Cl(T, l) (4.4)

Din(e) = Dout(e), 8e 2 E (4.5)

where:

Din(e) =
X

T

xproc(T, e) +
X

lij :ej=e

xtrans(lij)
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is sum of data inflow to or processed data on an element. In a similar fashion:

Dout(e) =
X

T

xresolve(T, e) +
X

lij :ei=e

xtrans(T, lij)

is the sum of data outflow from or resolved on an element. Constraint 4.4 ensures that the cost

of using an end-to-end path is smaller than the path bid by a path user, i.e. path source and task

processor. R maps a cost function to the operational solution:

R : C
Eq. 4.3&Bp(f)
���������! R ⌘ (xproc, xtrans, xresolve)

Using Eq. 4.2, VR(f) and VR are federated values and the value of operational solution R. The

solution to the above model ranges from no resource exchange, to fully shared resources across

federation, depending on technical and financial constraints. For instance, in a federated network

with no inter-federate link, no exchange of resources is possible and the above model can be solved

by federates independently. On the other hand, assume that inter-federate links exist and federates

share their resources with minimum value, then, above model is the value-maximizing solution.

Finally, any other configuration of bids by federates results in a result between these two extremes

in terms of value. These categories are called independent, centralized, and federated solutions

and are explained in details in following sections.

4.3.1 Independent Solution (IS)

No sharing of resources among federates happens given the technical and financial constraints.

The solution to the operational model and a value-maximizing solution by each federate give the

same results (i.e. zero value-added by the mechanism in Eq. 4.3). For instance, submitted bids with

these conditions result in an independent solution regardless of technical constraints: maxf (Bp) <

minf (Bl). The current situation with design of satellite systems (e.g. constellations and swarms of



www.manaraa.com

92

satellites) resembles independent operation.

4.3.2 Centralized Solution (CS)

Under a centralized solution, federates share resources with others for the minimum (energy) cost.

The operational solution results in value-maximizing sharing of resources in federation, namely

centralized solution. This condition results in the most collective benefit for a federation but not

necessarily for all federates. Under a centralized scheme, the solution is anonymous in the sense

that re-configuring the federates won’t change the solution, actually, the solution resembles a solu-

tion to elements belonging to one federate. For instance, these two conditions ensure centralized

solution to operational model: Bp(Ft(T )) = VT and Bl(Fl(l)) = ✏l.

4.3.3 Federated Solution (FS)

Under realistic assumptions and using an operational model with feasible technical constraints for

inter-federate resource exchange, the solution to an operational model reflects strategic decisions

(bids) by federates. This solution represents the most realistic case for a federated network as

federates consider internal priorities (e.g. opportunity cost of resources) and translated to strategic

bids or premium for relaying data. This strategic bid is similar to the concept of strategic premium

over actual cost of energy by relaying nodes in a communication network [153]. This solution

assumes distributed control and authority on resources by a federate when it informs federation of

its available resources at each time step and join a limited agreement by auctioneer’s mechanism

resulting in the federation solution. Any reasonable condition outside IS and CS might lead to a

federated solution where:

VIS < VFS < VCS
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4.4 Proposed Algorithms

The operational model introduced in Sec. 4.3 solves the efficient routing for a given set of feasible

prices for links. Nonetheless, offering resource prices in a feasible boundary constrained by bids is

not trivial as higher prices might alter the routing solution. In theory, offering prices and allocating

resources shall be performed simultaneously. The VCG scheme for pricing shortest path suggests

the highest price that won’t change resource allocation, i.e. the price that is independent of bidder’s

declaration [153]. In this section, auction algorithms includes finding prices and searching for most

efficient operational solution. I formulate five models for pricing resources for link owners. For

linguistic simplicity of auctions in communication between federates and the auctioneer, I assume

equal bids for all links owned by one federate.

4.4.1 LP Binary Auction (LPA)

In [149], the CA-LP model was introduced to search for the resource values for cloud users in a

combinatorial auction. Algorithm 4-Iintroduces a reverse auction for a routing solution and binary-

search for maximum prices applicable to the solution. This mechanism is based on solving the

MILP model in Sec. 4.3 and searching for a combinatorics of prices higher than link bids that also

satisfy path bids. In this algorithm, distinct prices are limited by the number of federates, i.e. one

price for a federate. This assumption reduces communication overhead of running the auction [175]

and the computational cost of searching for prices.

Algorithm 4-I: LPA

1: Phase 1: Collection

2: Collect computational tasks T on potential task-processing elements

3: Collect seller and buyers bid functions from federates: Bl(f) and Bp(f) from federates.
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4: Phase 2: Routing & Price Search

5: find MILP initial solution/value R = R(Bl) and VR.

6: find upper and lower boundary for link prices: (plf , puf ) : f 2 F .

7: while plf 6= puf do:

8: find mid-price pmf = (plf + puf )/2

9: solve MILP solution M = R(plf ) value for mid-price: VM

10: if VM = VR then:

11: plf = pmf

12: else

13: puf = pmf

14: end if

15: end while

16: suggest P(f) = plf to federates

4.4.2 First-price Sealed Auction (FPA)

Pica and Golkar evaluated performance and cost of sealed-bid reverse auctions including a first-

price algorithm for reallocating resources in an application case of federated satellite systems [85].

FPA implements the first-price reverse auction for pricing resources for a value-maximizing routing

solution:

R⇤ = R(Bl,Bp)

P(T, l) = Bl(l)

where Bl is the proposed bids for links, R⇤ is the routing solution, and P(T, l) is the proposed prices

by the auctioneer to federates.
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4.4.3 Sequential Least-square Pricing (SLA)

In Section 3.5.1, I introduced an application of a fast non-linear algorithm in developing an incentive-

compatible pricing mechanism in a federated network. This algorithm uses a sequential itera-

tive method for constrained nonlinear optimization, namely sequential least squares programming

(SLSQP), to maximize prices and ensure an expected value for a federate in an auction run. Ac-

cordingly, SLA maximizes inter-federate prices and use FS (Sec. 4.3.3) values as constraints for

pricing:

max
P

2

4
X

l2L,T2T

xR
⇤

trans
(l)⇥ P (T, l)

3

5 (4.6)

subject to:

VR⇤ � VR (4.7)

VR⇤(f) < VR(f) 8f 2 F (4.8)

P(T, l) � Bl(l)� k ⇤ ✏ 8l 2 L (4.9)

where R⇤ is MILP routing solution to relaxation in bids:

R⇤ = R(Bl � k ⇤ ✏,Bp)

and R = R(Bl) is routing solution to literal bidding constrains. The reason for relaxing the con-

straints is to explore alternative solutions with minimal rerouting in operational solution. In Chap-

ter 3, maximum flexibility was considered for pricing constraints, i.e. P(T, l) � ✏ but in SLA, limited

rerouting flexibility (k = 3) is assumed for closing the gap between prices and bids. However, this

method is incentive-compatible by at each auction run (not necessarily in multiple runs) by Eq. 4.8

since all federates benefit from being truthful to accept the auctioneer’s prices.
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Algorithm 4-II for SLA is:

Algorithm 4-II: SLA

1: federated: find solution with bidding constraints: R = R(Bl).

2: values: find federated values: VR(f).

3: path bundles: find all solutions S with P(T, l) � Bl(l)� k ⇤ ✏ and VR⇤ (f) � VR(f)

4: sort bundles: find solution S with maximum total value VR⇤ : Sm

5: prices: find and suggest prices P(Sm) solving SLA objective function in Eq.4.6

4.4.4 Online Closed-Form Pricing (ONA)

In multi-hop device-to-device communication networks, online auctions are applied to scheduling

spectrum by primary users in a secondary market, routing data, and matching sellers and buyers

[176, 177]. In this section, I introduce a closed form solution for pricing communication links in

a multi-hop source-to-destination routing. Algorithm 4-III gives a pricing solution for resources

shared by federates and used by multiple computational tasks in a routing solution. In this algorithm,

the idea is to find maximum link prices on each path that doesn’t violate constraints and prioritizes

increasing lowest bids on a path.

Algorithm 4-III: ONA

1: Phase 1: Collection

2: Collect computational tasks {Ti} on potential task-processing elements

3: Collect seller and buyers bid functions from federates: Bl(f) and Bp(f) from federates f 2 F.

4: Phase 2: Routing

5: find MILP solution/value R = R(Bl) and VR.



www.manaraa.com

97

6: Phase 3: Pricing

7: for T 2 T do

8: P⇤(T, l) = Bl(F(l)) : 8l 2 L

9: while True do

10: find minimum link price for T:

prmin = min
l

P⇤(T, l)

lmin = argmin
l

P⇤(T, l) (4.10)

11: find the second lowest price for T:

pr2 = min
l:2ndP⇤(T,l)

P⇤(T, l)

12: if

X

l2L,T

[xtrans ⇥max
l

(P⇤(T, l), pr2)] > Bp(fT )

(i.e. cost with pr2 violates a path bid)

then:

13: end raising link prices (break while loop)

14: else

15: update minimum price with second pr2:

P⇤(T, lmin) = pr2 : 8l 2 LP

16: end if

17: end while

18: end for

19: find minimum price/link(s) in P⇤ using Eq. 4.10 ! (prmin, lmin)



www.manaraa.com

98

20: raise minimum price until:
X

l2L,T

[xtrans(T, l)⇥ P⇤(T, l)] = Bp(fT )

21: suggest minimum calculated price for each federate:

P(f) = min
T,l:F(l)=f

P ⇤(T, l) (4.11)

Proposition 1. Federation (collective) value by ONA is equal to the value by LPA.

Proof. Assume R and VR are routing solutions and value by the operational model in Eq. 4.3 and

assume that the PLPA and PONA are suggested prices by those algorithms. From auctioneer

functionality (see Algorithms I and II), I know that PLPA(T, l) � Bl(l) and PONA(T, l) � Bl(l) : 8l 2

L. Then, any solution R⇤ with VR⇤ > VR must be R as it satisfies bidding constraints and has higher

value: R⇤ = R.

According to this proposition, I apply ONA instead of LPA as it is faster in runtime (see Sec. 4.6.3).

4.4.5 Virtual Multi-Path Pricing (VPA)

delivering multiple tasks, multiple prices for sharing resources might be applicable for different tasks

as long as payments remain balanced for federates. In this section, I retain calculated online prices

P
⇤(T, l) (in Eq. 4.11) and propose balanced virtual prices for links in a routing solution:

P(f) =

P
T,l:Fl(l)=f

P
⇤(T, l)

P
T,l:Fl(l)=f

xtrans(T, l)
(4.12)

Lemma 1. Virtual pricing in Eq. 4.12 results in a balanced payment.

Proof. Assume a pricing scheme H in which a federate pays P
⇤(T, l) for link l, the payment is

balanced because the seller also receives the same amount for sharing each link. Now, for a
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federate f , if total payment by VPA is equal to H ’s, the former payment is proved to be balanced:

payment(f) =
X

T,l:Fl(l)=f

xtrans(T, l)⇥ P(f)

=
X

T,l:Fl(l)=f

P
⇤(T, l) = H(f)

4.5 Simulation Study

This section proposes a federated application intending to evaluate the auctioneer’s economic ef-

ficiency, behavioral effects, pricing functionality, convergence time and computational cost for the

proposed algorithms in different networks. The application in this section receives bids from fed-

erates, executes an operational model, and offers prices for inter-federate resource exchanges

based on the algorithms introduced in Sec. 4.4. For initial conditions, I consider a network topology

consisting of elements, federates and communication links among those elements. In the follow-

ing sections, static and dynamic models are introduced with assumptions and metrics for model

validation. For simplicity, bids and prices are relative to the maximum task value.

4.5.1 Network Topologies

In a federated TN, a topology includes source and destination elements and communication links

among those elements. A feasible solution by an operational model to a topology depends on

its number of elements, federates and existing links. In this chapter, the number of edges are

defined relative to its maximum number in a complete network, namely edge density. In addition,

the number of federates affects independent and federated solutions (IS and FS). Intuitively, for a

given set of elements and a fixed set of bids, more federates reduce the value of IS and FS as it

creates more constraints in the operational model and higher combinatorics of prices in the pricing
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mechanisms. In this section, I explore the federated networks with 10, 15, and 20 elements, 2 or 3

federates and edge densities in {0.33, 0.22, 0.15, 0.1}. Two elements are assumed to be equivalent

destinations of delivering data while other elements are potential sources for processing tasks. For

each topology, I assume tasks are available to all elements except to the destinations and link

capacities for transmitting task data is twice a task’s data size, i.e. a link is usable by two separate

sources. Finally, I assume data size and delivery value are equal for all tasks.

(a) independent (b) federated (c) centralized (d) collective value

Fig. 4.1: Federated TNE with 8, 13, and 18 processors and 2 destinations with optimum results for: a) Independent (IS) b)
Federated (FS) with path-cost bid more than for one-link resource exchange among federates (i.e. pricep > pricel >> ✏),
c) Centralized (CS) and d) Values: relative values of IS and FS to CS.

In building networks, a random seed shapes a topology in terms of its inter-element links and
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distribution of elements among federates. Since the number of available tasks only depends on

the number of elements, value of CS (centralized solution) is limited by the number of paths for

delivering data to destinations. Real-world networks such as satellite systems have fewer number

of destination elements or hubs (e.g. ground stations in a satellite swarm) but these elements are

more connected (central in a network) than others. Accordingly, I consider higher probability for

connecting those nodes.

Figures 4.1 shows selected topologies with bids that produce routing solutions for CS, FS and

IS. The selected network topologies with 8, 13, and 18 sources, two destinations, and three

federates for each topology. For FS, link bids are equal for all federates and is more than one-link

resource exchange among federates (Bp > Bl � ✏). The CS has high path bid by task processors

(Bp ⇡ VT ) and minimum link bids by resource sharing federates (Bl ⇡ ✏). The right column shows

is relative values of independent and federated solutions to centralized solution.

4.5.2 Static Model

Static results explore the effect of non-competitive double-bids by bidders on the auctioneer’s output

in terms of values and prices for federates within one time step. In static model, I assume equal bids

by all federates when a federate f ’s link and path bids change within a range: ✏  bidl(f) < 1 and

✏ < bidp(f)  1. The total number of auction runs is 2.4 million cases including all permutations

of double bids for four designs and all topologies. According to Sec. 4.3, the minimum bidl and

maximum bidp show the CS and any bidp < bidl leads to IS.

For this model, Fig. 4.2 shows averaged values versus financial constraints (link and path bids)

in the operational model. The values are averaged values relative to CS across 240 topologies

introduced in previous section. This model considers granularity of 100 distinct link bids and 50

path bids being assumed as equal for federates. Intuitively and analytically, both lowering link bids

and raising path bids result in greater-or-equal values for a federation. With similar assumptions, the
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Fig. 4.2: The averaged collective value of federation versus link bids by link owners and path bids by path users: lower link
bids and higher path bids (higher path cost cap) result in higher values for a federation. The values are averaged relative
values across 240 topologies in Sec. 4.5.1. The bids are assumed to be equal for federates with granularity of 100 link bids
and 50 path bids (1.2 million simulation runs). Collective values versus bids for one auction-run are equal for all mechanisms
as bids are assumed with no sequential bids.

plots in Fig. 4.3 show the auctioneer’s functionality in terms of pricing resources for four algorithms

corresponding to link bids and ranges of path bids. In the latter figure, for no resource exchange

among federates, i.e. a failed auction run, the actualized price is considered to be zero.

4.5.3 Dynamic Model

In the context of online auctions or those with sequential bidding, an auctioneer’s performance de-

pends on static parameters and dynamic ones such as bidding behavior by selfish participants. In

this section, I introduce building blocks of a dynamic application and run the proposed algorithms

for 6000 time steps and 100 initial seeds of random functions in q-learning. All dynamic visualiza-

tions use the moving average of values with window-size of 40 steps resulting in 150 points for a

temporal plot and dynamic metrics for bids, prices, values, convergence, and computational cost

are introduced.
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Fig. 4.3: The prices by auctioneer for link and path bids by federates: (a) FPA: first-price auction in which a resource owner
receives its suggested bid-value from task processor after resource allocation, (b) SLA: sequential non-linear that maximizes
the prices for resource owners using SLSQP algorithm, (c) ONA: online auction which is the result of closed-form calculated
prices by Algorithm 4-III, and (d) VPA online auction with virtual prices that calculates closed-form calculated link prices
from Algorithm 4-III and Eq. 4.12.

In [44], the authors introduce a q-learning technique with Gaussian update for Q-values Qt

jf
of

federate f with index j at time t:

Qt

jf
 Q(bt

jf
) + ↵ij [V

t

if
+ �Q(bt+1

jf
)�Q(bt

jf
)] (4.13)

where bt
jf

is bid by federate f with index j at time t, ↵ij is learning factor for closeness between

actions with indices i and j, V t

if
is value at time t for federate f for bid with index i, i.e. Q-value of

j is updated using value from bid i. In above formulation, ↵ is a Gaussian distance function with

lower ↵ij for farther bids when ↵ii = maxj ↵ij .

The above model starts from higher effect of observation on learned behavior converges to

more specific bids later in time. In addition, for a topology I don’t consider states and a Q-value

corresponds to a bid index. Two random parameters (rg and rl) help with finding global-optimum

bid at earlier time steps and local adjustments in later time steps:

rt+1
g

= �gr
t

g

rt+1
l

= �lr
t

l
(4.14)
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Fig. 4.4: Averaged link bids, path bids, and link prices by federates normalized by the task value and expected bids/prices
for each topology. The colored areas are within one standard deviation. The convergence implies bids approaching toward
the expected values for each federate and algorithm and bid type (link or path): a) FPA, b) SLA, c) ONA and d) VPA. ONA’s
link bids converge to lowest bids.

where rg selects random bids and rl determines stepwise movement of bids. The random parame-

ters for q-learning in Eq. 4.14 are selected as: r0
g
= 1 and r0

l
= 0.05 while these parameters change

at rates of �g = 0.997 and �l = 0.998 at each time step1.

• Normalized Bids: A metric is introduced to normalize bids by steady-state bids in each topol-

ogy and averaged bids in each algorithm. Using this technique, I can both show convergence

in bids and compare relative bids across algorithms on y axis. Assume bmt
n

is relative bid at

time step n for topology t and algorithm m. Also assume that cbmt is the converged (steady-

state) bid. The normalized bid for visualization is calculated by:

nbmt

n
=

bmt
n

cbmt
⇥

X

t

cbmt (4.15)

This function is separately but similarly applied to link and path bids and results are shown in

Fig. 4.4. The colored areas show the bids within one standard deviation of mean bids within

a topology.

• Auctioneer’s Prices: The prices proposed by the auctioneer reflects the actualized resource

exchanges between federates. The function introduced in Eq. 4.15 is also applied to nor-

malize prices and Fig. 4.4 also shows normalized prices for actualized exchanges, i.e. won
1Performance of algorithms in our simulation study are consistent for different combinations of �g and �l
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Fig. 4.5: Averaged value of federation per auction-run normalized by value of CS and the area within one standard deviation:
(a) FPA: first rice reverse bid auction, b) SLA: non-linear rerouting and pricing of auction, c) ONA: online algorithm with
closed form prices and d) VPA: virtual pricing for multi-task routing solution. The simulation is run for 6000 time steps each
topology among 240 variations with 100 initial random seeds for q-learning algorithm for bidding by federates. All values
represent moving average of values with window size of 80 and 40 for convolution and sampling respectively. In terms of
results, ONA’s prices show converging to highest value and most consistent results across 240 topologies.

auctions, assuming price equal to zero for auction runs without any resource exchange.

• Collective Value: A collective value shows the sum of values collected by federates in a time

step. For each topology, a collective value is normalized by the maximum value of federation

and is averaged across different seeds. While a maximum price or bid is not objectively

definable for on a topology, the maximum value driven from CS. Fig. 4.5 shows the evolution

of collective value for the algorithms across different topologies. The simulation is run for 6000

time steps each topology among 240 variations with 100 initial random seeds for q-learning

algorithm for bidding by federates. The shown values are moving average of values with

window size of 60 and 30 for convolution and sampling respectively. The colored areas show

relative values within one standard deviation of the mean values across topologies.

4.6 Analysis and Discussion

In this section, I first analyze static and dynamic modes based on simulation results then introduce

statistical and computational perspective to auction-based algorithms and discuss implications of

this work compared to similar studies in literature.
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4.6.1 Static Analysis

For the static model, results show decreasing values for increasing bids except for some flat inter-

vals particularly for more relaxed path constraints (Fig. 4.2). The decreasing values are because of

additional routing and path constraints in the operational model. The flat intervals indicate a range

of bids where only one inter-federate link is feasible in a path. For instance, assuming equal path

bids bidp = 0.9, any link bid 0.45 / bidl / 0.9 results in the same routing solution with maximum

one inter-federate link per path. The ripples in the second part of the latter plot is due to the granu-

larity of path bids and the number of topologies. Although a value interval doesn’t change a routing

solution, it may hide negative correlation between resulted values and submitted bids to federates,

i.e. non-decreasing reward for increasing bids.

For pricing results by the static model (see Fig. 4.3), FPA offers equal prices to bids as long

as those bids satisfy path constraints. For lower ranges of path constraints, averaged prices falls

earlier as the number of failed auction runs increases (price = 0). The suggested prices by the

SLA is slightly higher than FPA’s as this algorithm searches for an alternative routing solution with

a relaxation in bids. The ONA offers higher prices relative to SLA while highest prices belong to

VPA. In the two latter results, I observe two main steps in pricing: 1) The lower step belonging to

CS with maximum value when a range of link bids won’t affect the solution and 2) The upper step

belonging to routing solution with one inter-federate links per path: pricel ⇡ bidp. The static results

show that in two algorithms FPA and SLA, suggested prices are directly proportionate to bids while

in ONA and VPA, prices are stepwise and indirectly proportionate to bids. For instance, in the latter

algorithms, increasing bid doesn’t necessarily result in higher value for a federate, i.e. the auctions

are almost monotone.
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4.6.2 Dynamic Analysis

The results by the dynamic model show: 1) effect of selfish behavior by federates on bids, prices,

and values in time, 2) effect of topologies on values, and 3) effect of algorithm on convergence in

and across topologies. In the ONA, bids on links converge to the lowest ones (⇡ 0.42) among algo-

rithms and are strictly decreasing while path bids also converge to lowest bids (see Fig. 4.4). The

link prices in the same figures, calculated using actualized inter-federate exchanges, are rather in-

creasing which show higher prices by the auctioneer as a result of more practical bids by federates.

Nonetheless, these prices don’t reflect the number of exchanges between federates which might

be higher for more efficient auctions. Then, the lower prices in ONA is because of more resource

exchanges among federates. For collective values, ONA achieves highest values with minimum

deviation among topologies. In Fig. 4.5, the results for FPA and VPA are similar in terms averaged

value and variance while they have most difference in prices among algorithms. SLA achieves

slightly higher average values than these two algorithms and lower values than ONA’s.

In the dynamic model, I introduce a metric for convergence rate of values given a topology or

an algorithm. Order and rate of convergence are widely used in numerical methods and defined by

p and µ where an iteration is xn+1 = g(xn) and:

|xn+1 � x⇤
|

|xn � x⇤|p
! µ

with x⇤ as target value. In above equation, the convergence is linear for p = 1 and rate of 0 < µ < 1.

In above equations, I distinguish individual and aggregated rates of convergence. In the former

equation, target value x⇤ is distinct for each topology while in aggregated case the target value is

averaged value across all topologies. In both equations, I consider absolute values for nominator

and denominator at each time step. In particular, assume xt
n

is the averaged value of an topology

t at time step n and xt⇤ is final converged value for topology t:
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Fig. 4.6: Median individual and aggregated convergence rates for all topologies.

converateind =
|xt

n+1 � xt⇤
|

|xt
n
� xt⇤|

converateagg =
|xt

n+1 �
1

240

P
t
xt⇤

|

|xt
n
�

1
240

P
t
xt⇤|

(4.16)

where 240 is the number of topologies.

Fig. 4.6 shows the individual and aggregated convergence rates for collective values of all

topologies. In this figure, FPA, SLA and VPA are faster converging than ONA, although toward

sub-optimal and lower values. The individual and aggregated convergence rates in Fig. 4.6 show

that convergence is faster (rate is lower) for SLA and VPA algorithms earlier in time. Almost all

individual rates are less than one (µ < 1) because the values are improving in a distinct topology.

Initially, individual rates go downward for diminishing effect of random selection in bids during first

steps. The rates rises when the stepwise random selection for local optimum starts and the inter-

action effect {↵ij : i 6= j} in Eq. 4.13 is still high. The median convergence rate reaches minimum

value as both random adjustments and ↵ij decrease which relatively stabilize values after half of

time steps being passed. The quantile variation in individual convergence also decreases in later

time steps. The individual values converge to final values for ONA faster than other algorithms as

the individual rates are equal to one after about 4k of auction runs.

The aggregated rates start from low values, rise towards one with high variation and stays
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Variables DF F p-Value Eta-sq
Topologies 239 11079 0.0 0.725555
Auctions 3 9576 0.0 0.007872
Topol.:Auct. 717 19 0.0 0.003786

Table 4.1: Two-Way ANOVA: Value vs Network Topologies and Auction Algorithms

close to one for later time steps. During initial steps, values are extremely sub-optimal as the

result of random exchanges in federation, i.e. exploration in q-learning. However, convergence in

aggregated rates stop while individual federates find better values because structural differences

among topologies result in various caps on collective values. In sum, ONA offers convergence, not

fastest but most consistent in terms of expected value, individual rates, and aggregated variation.

4.6.3 Statistical Analysis and Computational Cost

For statistical results, I shall separate the effect of an algorithm from that of a network topology.

A two-way ANOVA test is applied to collective values using a linear model from statsmodel in

Python2. In this model, independent variables are three sets of categorical variables for topolo-

gies, algorithms and mutual interactions among those, respectively with 239, 3 and 717 degrees of

freedom.

Fig. 4.7 compares converged values of federation among algorithms from 10 latest steps across

all topologies. The values are relative to value of CS for each topology. The results from a two-way

ANOVA test using two categorical variables of topology and algorithm are presented in Table 4.1

where ONA achieves significantly higher values among algorithms.

For computational costs, I use random topologies different from the proposed topologies in

Sec. 4.5.1 because we need to run each algorithm once (for one time step vs 6000 time steps in

the dynamic model) to assess algorithmic cost and we can practically afford to assess the cost for

larger networks. A fixed link density equal to 0.1 in networks with 10 to 34 nodes is considered with
2http://www.statsmodels.org/dev/anova.html



www.manaraa.com

110

Fig. 4.7: Converged collective values of topologies for algorithms during 10 latest steps resulting in 2400 points per algorithm.

30 random seeds to build connections in topologies. Finally, I consider 2 to 10 federates for each

simulation run and network topology resulting in total of 27000 simulation runs. Fig. 4.8a shows the

runtime of SLA and MILP (VPA/ONA/VRA). The values are averaged across 30 seeds of distinct

topologies and in networks with close to 0.1 edge-density. The left figure shows the logarithmic

scale of averaged time based on number of nodes and the right figure shows the averaged runtime

for different ranges of networks size.

FPA, ONA, and VPA are computationally equivalent to one operational run of MILP while SLA

needs at least two operational runs for a federated solution in finding values and a relaxed solution

for rerouting and finding prices. Although MILP is NP-hard, depending on the model and constraint,

it can be solvable in polynomial time. The complexity of a sequential algorithm for finding price is

independent from and significantly lower than the operational solution. Fig. 4.8a shows the relative

runtime of algorithms that are linear in logarithmic plot, i.e. exponential in time. The algorithmic

runtime also depends on the contextual model. Based on Fig. 4.8b, runtime rises with the number

of federates at first (up to 4-5 federates) and goes down afterwards noticing the logarithmic scales
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Fig. 4.8: Computational runtime of auction-based algorithms based on network size and number of federates.

in this figure. This observation is because of first increasing the complexity of satisfying constraints

in operational run, second, decreasing the number of feasible exchanges in a federation. In addition

to the operational cost, the computational cost of a LPA also depends on a binary search for prices.

The binary search depends on the granularity of target price and the range of price search. For

m possible prices for each federates, the computational cost of binary search is log(m) powered

by number of federates and multiplied by a runtime of MILP. Assuming a granularity of 50 (2 ⇤ ✏

precision) for prices and two federates, the LPA runs in 3.92 ⇥ runtime(MILP ). Fig. 4.9 compares

the runtime of LPA to ONA’s for smaller set of networks.

4.7 Discussion and Conclusion

For the research questions in Sec. 4.2.1, this chapter formulated five auction-based algorithms

for the scheduling and routing problem in a network. In the context of a federated system with

bidding constraints and efficient solution for resource allocation, an auction-based algorithm finds

the prices for resources aimed at being economically efficient, individually rational, and truthful. In
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Fig. 4.9: Computational runtime of ONA and LPA based on network size.

TNE, a two-sided auction are modeled using an additional variable for each routing path (i.e. path-

cost-bid) which captures the minimum value a federate expects for processing a task. For finding

most efficient prices, an auctioneer should search for prices using a combination of prices with the

mentioned characteristics. This results in designing an algorithm with iterative MILP solution and

binary search for prices. In a routing problem, I formulated first-price sealed-bid reverse auction by

assuming a link price equal to its bid. Nonetheless, defining a unified second-price auction or VCG

scheme for combinatorial multi-source and multi-hop routing is challenging. Through an online

algorithm and a virtual pricing, a second-price and VCG schemes is represented using increasing

prices and reducing the variation of prices for resource owners on each routing path. Using the

online algorithm (ONA), I suggested a closed-form solution for prices by maximizing prices on each

path and reducing variation among prices and finding the minimum price among links shared by

a federate across all its paths. In the case with virtual pricing (VPA), algorithms use the same

technique except that it suggests average prices to each federate versus minimum price by ONA,
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which implies that prices for resources might be different for the seller and the buyer of a link

while payments remain balanced. Finally, an auction model with non-linear sequential programming

(SLA) maximizes prices for shared resource while maintains same prices for each federate.

The proposed metrics for model validation include collective value of processing tasks across

the federation, actualized prices for exchanging resources in successful auctions, and convergence

rate of the algorithm. For simulation study, a q-learning technique is used to model rational strategic

bidders/federates. The resulting figures show that ONA algorithm with variation-reducing approach

significantly increases the collective value across a federation while reduces the actualized prices

and bids for sharing resources. In addition, convergence rate for the proposed ONA algorithm is

faster while variation in value across different topologies is lower. The same algorithm with virtual

pricing (VPA) fails to maintain the same performance level although suggested prices for sharing

resources are higher.

This chapter contributed: 1) formulating a value-maximizing operational model that allocates

online tasks to elements and communication resource to computational tasks given a federated

network with structural topology and financial constraints, 2) formulating linear program auction

with binary search for prices, 3) an online algorithm for closed-form solution to pricing links on a

given routing solution, 4) a virtual pricing algorithms for routing multiple tasks, paths and federates.

In this chapter, the communication cost relates to inter-federate data transmission and is formulated

by constraints in an operational mechanism. The study plan involved a static model for demonstrat-

ing auctioneer’s behavior in a structural topology and a dynamic model to evaluate the effect of

mechanisms on collective values given selfish bidding behavior by federates. The results showed

that by ONA mechanism, an auctioneer proposes equilibrium prices for sharing inter-federate re-

sources (see Fig. 4.4) and offers higher value for exchanging resources by federates (see Fig. 4.5)

and lower cost for inter-federate communications. The pricing behavior and values resulted from

the developed mechanisms in this work showed monotonic growth in value and stability in bidding
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behavior by federates. The results compared four selected auction-based algorithms in terms of

auction time, convergence, computational cost, and their adaptability to various network topologies.

Future works may develop mechanisms to address adversarial behavior by heterogenous partic-

ipants such as those modeled in social networks by sybil attacks (i.e. fake identities and tasks) [87]

and mechanisms for allocating resources to combinatorial team tasks, executed on multiple ele-

ments with shared assets among owners.
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Chapter 5

Influence-based Information Exchange in Social Networks

This chapter investigates a dynamic mechanism for influence-based information exchange in interactive and

social networks. The social influence is defined by being able to create content that is circulated on the

network. The nature of influence is captured using network structure of content contribution, e.g. tweeting,

retweeting, and replying on Twitter. For information exchange, a temporal framework for detecting and clus-

tering emergent and viral topics on social networks is developed. For validating and visualizing clustering

results for viral topics, three clustering metrics of popularity, burstiness, and relevance score are introduced

when two temporal graphical models show timing, cluster size, and temporal granularity of viral topics. In this

chapter, two camps of users are identified and recognized with media-driven and interaction-driven influence.

The results are matched with real-world news circulation by following and searching for viral topics during the

same period of data analysis (210 days). A simulation model is defined and formulated based on a real-world

user network in twitter and the observed characteristics of users. Using the same clustering model for Twitter

data, I detect viral simulated topics and associate the characteristics of those clusters to interactive nature of

social networks.

5.1 Introduction

According to facebook on organized attempt for influencing 2016 election, $100000 was spent on

3000 ads by inauthentic accounts and pages [178]. The process of targeting and influencing a
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population on a social network under the current mechanism is extremely cheap and fast [179].

On the other hand, humans are more likely to be involved in the process of circulating fake news

than bots due their emotional responses associated with fear, surprise, and disgusts facing those

news [180]. Due to the low cost of news circulation and effectiveness of a networked structure, a

dynamic mechanism involving behavioral characteristics of participants and spreading dynamics of

viral topics may effectively share a perspective on circulation of content in interactive networks with

social structure.

In a survey conducted by Pew Research Center in 2017, 32, 68 and 74 percent of youtube,

facebook and twitter users have reported getting news on these social media platforms respectively.

In the case of twitter, this number was up 15 percent from the previous year [181]. Twitter has

evolved from “a toy for bored celebrities” as described by the New York Times columnist Maureen

Dowd [182] towards a news source for 68 million users in the US since its creation in 2006. Twitter

differs from the other two platforms in the way tweeters contribute to information exchange on the

platform. It enables users to tweet, retweet (republishing a tweet for followers), quote (expressing

an opinion along with another), and reply (introducing a destination for a tweet). In addition, since

November 2017, a member can express herself in 280 characters that although is 100 percent higher

than the previous limit but is lower than book-length characters a user can share on Facebook1. On

an interactive social platform, aside from hard limitations applied to a content, soft limitations such

as attention span of audience and type of audience limits the freedom of contributors in terms of

using a conventional language with an arbitrary message and length (see [98,183,184]).

Ubiquitous use of social platforms, e.g. Twitter and Sina Weibo, by diverse contributors and their

content limitations create a new type of communication called microblogs that allows exchange of

content including links, images, and brief sentences across a network for a set of audience where a

user can both consume and produce content [23,24,26]. Thereby, topics might range from daily life
1Most famously, 280 limit on Twitter,1300 for status update on Linkedin, and not as much applicable limit of 63,206 for a

single post on Facebook
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to events, news, stories, lifestyle, and personal interests [25]. Accordingly, contributors may invent

and apply new linguistic tools aimed at more efficient communication with: minimal grammar, brevity

in wordings, and frequent abbreviations. An example of these minimization was the introduction of

hashtags to twitter in 2007 [27].

The latter linguistic techniques increase the number of audience who participate in a conversa-

tion, imitate using a social language, and contribute to communication in form and content. The

use of social language with automated content creates enormous opportunity and threats for con-

tributions by automated accounts (bots) on social platforms. For the instance of Twitter, around

9 to 15 percent of accounts are bots that contribute to content and advertisement revenue [185].

The complexity of using language on social networks and active involvement of automated agents

and bots, seizing on spreading certain topics, political agenda, and fake news call for novel and

explanatory approaches for detection and analysis of viral topics on social networks [28–30]. In this

respect, formation of echo-chambers among users (i.e. retweeting and replying) emphasizes the

effect of information source on developing content by users [186], i.e. usual users act according to

perceived behavior from influential users.

This chapter explores the connection among behavioral metrics of influential users and evolu-

tion of content and discourse on a social networks. The scope of this chapter is limited to analyzing

and comparing two distinguished types of influential behavior in terms of their perceived contents in

a network. First, exogenous influence appears in sharing information by a non-interactive and ex-

ternal source such as a news media outlet or to some extent a journalist. In contrast, endogenous

influence is exercised through interaction and discussion through the platform among influential

users, i.e. hop, source, and lead users [187]. These observed types of behavioral influence by

users are: 1) Media-driven influence (MDI) that is associated with exogenous influence through

introduction, sharing links, and summarization of topics originally external to a platform and 2)

Interaction-driven Influence (IDI) that is associated with interactive behaviors such as retweeting,
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replying, and discussing topics on the platform among others. For instance, skimming the twit-

ter feed of CNN and Brian Sollis (@briansolis) roughly clarifies some differences between those

categories: news-oriented vs interaction-oriented, one-to-many vs many-to-many communication,

one-sided vs responsive, etc. Nonetheless, individuals may also be classified as MDI when their

main activity is spreading preprocessed news from news outlets (e.g. @DavidNakamura) while

some news outlet sources might be considered as IDI for the opposite reason (@AJCCenter).

This chapter investigates the application of mechanism design to drive micro-behavior toward

a collective goal in interactive social networks. The research problem mainly comes from recent

incidents on fake news and bot-driven content, propaganda, and advertisement in these networks.

To the author of this thesis, the observed problem is mainly driven from three factors: 1) so-

cial network has provided an inexpensive medium for users and other participants to contribute in

spreading content based on their opinion, 2) a social network is extremely effective and influen-

tial in lives of millions or billions of people in terms of its collective results (i.e. social welfare or

global utility) for all participants, and 3) users as the drivers of a global welfare don’t have control

or knowledge on the effects of opting a specific micro-behavior on the collective welfare affecting

themselves, i.e., users might hurt themselves without indention. The first components has been the

most significant results of introducing world-wide web in 21th century as the a platform that enabled

many-to-many connection among users and participants in terms of ability to create and distribute

content. Then, creating and distributing content is as cheap as the time spending on them except

that social influence remains expensive while the mechanism that results in higher influence is

driven from a more distributed and dynamic parameters, e.g. connections to other influential users,

attention-driven behavior, timing, distributing content, lifestyle, etc. Second, the social networks are

proven to easily affect or dominate the news cycles in current world which ultimately affect millions

of lives through politics, social movement, and economics. Nonetheless, users are usually blinded

regarding the collective effects created by their own actions in a social network. In other words,
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users act in a certain way partly because they don’t know the social cost of a naive/myopic be-

havior. For instance, the cost of spreading fake news in a social network is hidden from regular

users while the nature of spreading is mainly because of naivety of regular users in accepting and

distributing (i.e. confirming) a controversial but viral topic on a network.

Sec. 5.2 reviews related works on interactive models, agent-based social simulation, and clus-

tering models of topics in social networks. Sec. 5.3 introduces a method to classify users in two

behavioral categories of MDI and IDI based on their contribution features. Sec 5.4 introduces

a novel clustering technique to discover viral topics based on a network of terms and concepts.

Sec. 5.5 introduces and discuss a temporal connections among viral topics and Sec. 5.6 describes

data collection, research workflow and introduces three metrics to compare topics and visualize

results.

5.2 Literature and Problem

More than a decade after invention of world wide web, we started communicating through many-to-

many and interactive online social platforms. Multiple studies have developed models to understand

interaction mechanisms among social actors and communities during this era [98–102]. These

interaction networks are used to discover attitude, emotions, perception and sentiment associated

with a content [23,106–108]. In addition, temporal interactions could reveal and predict a community

structure, membership behavior of users, and profile a user by its behavior including identifying

bots or agents in spreading fake news [109–114]. In developing commercial applications, online

interactions among users and analysis of topics have given insight into discovering brand reputation

and political orientation [123,124].

For analysis of topic and discourse on social networks, Davis et al. develop a ranking model

for finding prevalent topics on Twitter [188]. Cigarr et al. present an approach using Formal Con-

cept Analysis (FCA) to distinguish interest groups regarding products and brands on social net-
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works [189]. Lipizzi et. al. use a graph-based approach using adjacency matrix of concatenation

among keywords to identify real-world discourses expressed through back-channeling on social

networks [190] where a similar approach can cluster users based on trending topics [191]. Xie

and Mathioudakis employ the concepts of popular and bursty keywords to detect topics in real-

time [192, 193]. Crane et al. differentiate between exogenous and endogenous topics [194] and

other studies compare topics from Twitter to conventional online media such as New York Times,

Google trends, and CNN base on endogenous and exogenous influence on users [195–197]. Net-

work models of users, concepts and documents have been employed to understand the dynamics

of community and content development on social network [117]. Networked influexntial users and

concepts help to calculate the effectiveness of WikiProjects in online content development [118]

and the structure of knowledge among computer science venues [119]. In addition, network statis-

tics, such as centrality, closeness, betweenness, and entropy are vastly employed to explain the

interconnectedness of communities and concepts in social networks [120–122].

Agent-based models are developed to facilitate theory-building, explain and analyze real-world

scenarios, and obtain policy recommendations in support systems [198]. Agent-based Social Sim-

ulation (ABSS) is a popular approach to study a complex social phenomenon eluding analytical

or empirical methods [199]. ABSS models must be as simple as possible and, at the same time,

describe reality, i.e. “keep it descriptive stupid” (KIDS) [199]. In other words, these models allow

simple rules of behavior in individual level that lead to a complex and aggregated behavior observed

in a collective system. The behavioral models involve metrics for interactions of agents with environ-

ment at each time step, e.g. stochastic process with some probabilities, production rules, density

functions, and machine learning [200]. In terms of applications, an agent-based model is used to

analyze and maximize diffusion of commercial messages by companies on social networks [201]

and machine learning models classify messages to rumors versus non-rumors based on temporal,

structural, and linguistic characteristics [202].
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5.2.1 Research Questions

This chapter approaches a research gap between behavioral model of users and diffusion model

of content in social networks. The goal of this chapter is to better understand a statistical dynamics

of users and viral topics and to propose a framework to analysis connect micro-level model of

interactive users to macro-level model of content in a social network. In this research, to understand

the connection between between these two models, I address three research gaps in literature:

A1 statistical relation between micro-level actions and macro-level collective observations in terms

of social modeling

A2 user actions and introduce (discover) collective metrics that capture and explain those behav-

iors

A3 an interactive model to explain and potentially predict interactive connection above behavioral

metrics

The research question addressed in this chapter is: How can exchange mechanisms for human

resources and information contribute to better collective metrics in interactive and social networks?.

This question can be disaggregated into:

Q1 How to model interaction in social networks?

Q2 How to detect and model spreading viral topics on social networks?

Q3 Which features describe social behavior of participants in interactive networks?

Q4 How micro-level behavioral model affects the macro-level content model?

5.2.2 Research Methodology

The main methodology in this chapter is data-driven and statistical analysis of user and network

behavior to: first distinguish and classify users in terms of their interactions and contributions,
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second, analyze discourse and content in a social network. The following steps address the above

questions in this chapter:

S1 analyze and define the concept of influence in social networks

S2 query and retrieve data for most influential users on Twitter

S3 develop a statistical model to classify types of influence in social networks using activity-based

data

S4 develop a content and discourse model for analyzing information exchange in a network

S5 develop a clustering framework to detect viral topics

S6 validate the clustering model using real-world comparative analysis of viral topics

S7 find statistical connection among the user-model of influence and the content-model of infor-

mation exchange

For the proposed researches in future, the proposed methodology is simulation study when an

interactive mechanism for driving collective behavior of a network toward a collective metric may

include analytical solutions and mechanism design.

5.3 User Classification

In this section, we distinguish two classes of behavior by users in terms of their interaction level and

type of contribution. First, online activities of a user can be captured by her tweets, e.g. length and

links, retweets, and replies. This introduces a model to classify users to two classes (MDI and IDI)

and extract new accounts on twitter associated with each class.

The classification model is a Logistic Regression (LR) model with number of retweets, number



www.manaraa.com

123

of replies, number of shared links, and median text-length as predictive features:

g(x) = �0 + �1x1 + �2x2 + �3x3 + �4x4

⇡(x) =
eg(x)

1 + eg(x)
(5.1)

In the first phase, I select 170 accounts with MDI and IDI characteristics noticing that these

accounts are recognized by monitoring online activities of accounts in terms of sharing personal

stories, direct communication with others, i.e. their organic interaction on social media. For in-

stance, New York Times is labeled as 1 (MDI) and interactive users such as Bill Gates is labeled as

0 (IDI).I train the logistic regression (LR) model in Eq. 5.1 using the selected accounts (training set).

In second phase, I extract accounts that have been most influential on those selected accounts

(e.g. being retweeted by them the most) and select second batch of data set consisting of 170 new

accounts. I label the latter data and add it to training data set, update the logistic model and repeat

the same processes of extracting, model updating and labeling the most influential accounts until

I collect more than 1750 accounts. In sum, 10% of accounts were labeled manually and the other

90% were collected and labeled iteratively (in mini-batches) using above LR model.

xi variable
Interc.

(0)
Retweets

(1)
Replies

(2)
Links

(3)
Text median

length (4)
�i coeff. -0.96 0.35 -1.76 2.82 0.61

Table 5.1: Coefficients of Selected Features in LR

Table 5.1 shows the selected variables and their calculated coefficients. The positive values for

retweets, shared links and median length of tweets imply that these variables are more associated

with MDI than IDI while number of replies is more associated with IDI than MDI.

Fig. 5.1 shows the probability distribution of accounts using LR model. The probability distribu-

tion is more skewed towards IDI with a sharp peak on p = 1. This implies higher certainty around

labeling the former set, i.e. tweeting behavior of a journal is more predictable than that of an indi-
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Fig. 5.1: Logistic regression’s probability distribution for 1580 unlabeled samples among 1742 total accounts. The right side
is associated with class 1 or MDI and left side relates to class 0 or IDI. The resulted distribution is skewed towards interactive
(IDI: left) behavior with a peak around the maximum probability. p = 0.7 is selected as the threshold for LR classification.

vidual. The minimum point of p = 0.7 is used to assign labels to accounts which also results in 20%

of users being labeled as MDI and the rest being recognized as IDI. In sum, user accounts are la-

beled into 352 and 1398 sources with exogenous and endogenous influence. Although the number

of former accounts are significantly lower than the latter accounts, but the aggregated activity level

of two groups are equivalent and very close because MDI users publish and share more tweets

and distribute more contents on average.

5.4 Clustering Model

A frequentist models of words are vastly used to cluster emergent topics in social networks. In this

respect, topics are both popular and scarce: first, a new topic is relatively viral and under discus-

sion across a network, second, it may not has been as much discussed in the past or under regular

circumstances. In tf-idf, a widely used method for extracting new topics, the usage-frequency of

a word in combination with the inverse-frequency of documents including the word define the rel-
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evance between a topic and a document. In social networks, a user may apply unconventional

wordings, phrases, hashtags and abbreviations to efficiently communicate her message, thereby,

a networked model of terms and words are applied to reconstruct grammar in analysis of dis-

course [190, 203]. In this chapter, I also opt to employ the networked structure of language for

clustering viral topics. According to a graph-based model, a term A (e.g. word, hashtag, abbre-

viation, keyword or compound word) is represented as a node when the frequency of its usage in

combination with the second term B in shared occasions imply the strength of connection between

these terms in developing new topics across a network.

The method introduced by this work is aimed at being efficient in detecting new topics, illustrative

and intuitive for analysis of those topics. To discover the strength of a link between terms using term-

pairs, similar to the frequency case in tf-idf, I devise two metrics: frequency of a pair and inverse

of expected frequency of the pair in a time frame, i. e. lower value for higher expected frequency.

Feng et al. (see [204]) defined the popularity of an event as the normalized frequency of that event

by number of tweets and and burstiness of an event as the standardized popularity by the popularity

of the same event achieved during temporal time frames. In this work, I introduce similar definitions

for graph edges among all used terms during a time frame.

Fig. 5.2: Clustering metrics of popularity and burstiness using the frequency of links among terms, words, hashtags, abbre-
viations and emojis: the total number of possible connections are defined based on the number of words: N(N � 1)/2 and
shows the number of rows in these matrices. The burstiness for each connection is defined as the standardized popularity
across all time frames.
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Assume that Wt = {w1, w2, ...., wN} are the number of all terms (i.e. words, hashtags, concepts,

and compound words) during time frame t, Dt = {d1, d2, ..., dM} are the documents (e.g. tweets,

post updates) published during the same frame, and:

Ft = {fijt : wi, wj 2Wt}

consists of frequencies of all defined connections among those terms where the cardinality of Ft

is the number of possible connections among N words: |Ft| = N(N � 1)/2. The popularity of link

normalizes its usage by the number of tweets during each time frame:

popularity : pijt =
fijt � µt

�t

, i 2 {1, ..., L} (5.2)

where µt and �t are averaged and standard deviation of frequencies in Ft at time frame t. The

latter equation which leads to an array of normalized popularity for existing links. The burstiness

standardizes popularity by the average values and standard deviation for the same connection

among all temporal frames:

burstiness : bijt =
pijt � µij

�ij

(5.3)

where µij =
P

t
pijt/T is the averaged value of popularity of link between wi and wj across T time

frames and �ij is the standard deviation of those frequencies.

Fig. 5.2 shows the algebraic steps in calculation of popularity and burstiness. While popularity

(Eq. 5.2) uses the direct columns of frequency matrix in time (each column represents frequen-

cies for all connections at one time step), burstiness formula (Eq. 5.3) uses popularity matrix. A

weighted average of popularity and burstiness for inter-word links gives the relevance score for

every connection:

relevance : rijt = ↵pijt + �bijt (5.4)
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A similar linear combination of above metrics in addition to localness was called ranking score

in [204]. In this work, the matrix of connection scores among terms is called relevance matrix which

is close to definition of similarity matrix in literature. We use a thresholds (e.g. 99th percentile) to

convert the relevance matrix to a sparse adjacency matrix.

aijt =

8
>>><

>>>:

1, if rijt � threshold

0, otherwise

(5.5)

5.5 Network Model of Topics

This section introduces a mathematical model to distinguish the behavioral aspects of cluster for-

mation among MDI and IDI. Assume Ri being defined as vector of score-weights between term i

and others where each score shows a relevance-score:

Ri = (r+
i1, r

+
i2, ...., r

+
iN

)

where:

r+
ij
=

8
>>><

>>>:

rij , rij > 0

0, otherwise

(5.6)

In other words, r+
ij

= 0 when two terms are not connected or are weakly connected at time t

and r+
ij

> 0 otherwise. For notational simplicity, I dropped time index t from rijt while each Ri is

defined for a time frame. The similarity formula among documents is defined

In literature, a similarity between terms namely text-weighing similarity formula is proposed by

Salton in [205]. This formula is also applied to compare texts, hashtags and documents in [204,206]

and [119]. Accordingly, term-similarity is defined as:
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similarity(Ri,Ri) =
Ri.Rj

||Ri||⇥ ||Rj ||

=

P
N

k=1 r
+
ik
⇥ r+

jkqP
k
(r+

ik
)2 ⇥

qP
k
(r+

jk
)2

(5.7)

In this paper, we aggregate similarities of all links between two topics and define topic-similarity.

Assume that topic v is defined using Wv and its corresponding vectors:

Cv = {Ri : wi 2Wv}.

Topic-similarity is defined as as:

topicsimilarity(Cv,Cw) =
X

Ri2Cv

X

Ri2Cw

similarity(Rj ,Ri) (5.8)

5.6 Empirical Results and Discussion

For empirical study, I collect and process more than 6,250,000 tweets published or retweeted by

1742 influential accounts on Twitter from August 2017 to March 2018. 355 accounts belonging to

journalists, economists, scientist, news organizations, activists, etc. are selected as initial seed of

influential users2 and another 1395 accounts from the most retweeted accounts by the initial seed

during 210 days of the time period are algorithmically retrieved. Extracting data from Twitter API

was sequential (170 user at a time) to regularly update our list of top influential accounts as each

additional set of accounts determined the next set.

For each tweet, I stripped text from frequent words and punctuations using stopwords reposi-
2using websites such as time, politico, sciencemag, etc.
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Fig. 5.3: Research workflow for classifying users, processing data, clustering topics and model validation.

Fig. 5.4: Burstiness vs popularity for 100 clusters of terms at each temporal granularity (50 cluster of each user class with
highest cluster score). The circle-size shows the topic consolidation in terms of relevance (see Eq. 5.4) among words in a
cluster. Term-clusters among MDI are smaller and more consistent in terms of popularity and burstiness while term-clusters
resulted from tweets by IDI accounts include relatively larger circles with more diverse sizes, which implies more distributed
clusters with various strengths and consolidation for temporal granularities of: a) 1 day:, b) 3 days:, c) 7 days: and d) 21
days:. The clusters emerged from IDI accounts in longer temporal moves towards the MDIs as mutual effect among two
classes of users emerge.

tory and retrieved stemmed words using nltk toolkit3. These processes significantly reduced the

number of effective terms and computational complexity of graph-based model of terms in memory
3http://www.nltk.org/howto/stem.html
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(a) Popularity (b) Burstiness

(c) Cluster Size

Fig. 5.5: Averaged popularity, burstiness, and size of topics for temporal granularities of 1, 3, 7 and 21 days for the top
100 clusters illustrated in Fig.5.4: (a) Popularity: averaged popularity is decreasing with duration of granularity-window time
frame while the relative popularity is higher for IDI except for longest time frame (b) Burstiness: averaged burstiness is also
decreasing with duration of granularity-window time frame and is relatively higher for IDI (c) Cluster Size: averaged cluster
size is lower for IDI among topics with highest scores except for 21-day time frame.

and time. For instance, each stem word aggregates 4.79 different words and 5000 stemmed terms

are equivalent to 23950 terms. In sum, these processes reduced the number of effective statuses

(by 15%) as it eliminated those without linguistic content e.g. photos, videos and links. For the

graph-based model, I selected 5000 as the maximum dimension associated with tokenizing the

documents. The selected words are the words with highest frequencies across all documents. Us-

ing scipy library on Python 3.6, we create sparse matrix of link-frequency when each link between

terms A and B is defined as the number of tweets that include both A and B.

For graphical results and clustering model validation, the three metrics introduced include: clus-

ter size, consolidation and normalized score. In summary, assuming Wk as the set of all stem-words

in topic k, |Wk| is cluster size and:

consolidationk = {lij : rij 6= 0 \ wi, wj 2Wk} (5.9)

nscore[Wk].s =

P
wi,wj2Wk

rijt

|Wk|
(5.10)
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(a) MDI

(b) IDI

Fig. 5.6: Dominant topic clusters for different temporal granularity: (a) MDI: topic clusters among the most frequent terms
by twitter accounts with media-driven influence, (b) IDI: topic clusters across user network with interactive influence. The
clustering analytics is implemented on the connections (i.e. usage links) among top 5000 most frequently used keywords,
terms, hashtags and english words. The links with most (99 percentile) relevance score are selected in order to achieve
sparse matrix for spectral algorithm. The darker color shows higher cluster scoreand the relative vertical height indicates
higher cluster consolidation among the cluster terms.

In sum, Fig 5.3 enumerates the steps for user classification, data processing and clustering

topics. In this section, we define three models for visualizing data on clusters, viral topics, and a

networked model of similarity among topics:
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5.6.1 Popularity vs Burstiness

In Fig. 5.4, the relative popularity, burstiness for top 50 clusters in terms of their relative score for

each user-class of MDI versus IDI are shown. In each figure, x-axis represents popularity and y-

axis represents burstiness where both are relative to cluster size and logarithmic and a circle radius

represents its cluster size. The temporal granularity includes 1, 3, 7 and 21 days, from left figure

to right. The y-axis has equal range across all temporal frames for better comparison (2.2 to 5).

Although these figures show the logarithmic and relative values, I use relative and non-logarithmic

values of popularity, burstiness and scores for discussion.

The two dimensional plot of popularity versus burstiness can distinguish the outliers among

other clusters and also distinguish some behavioral differences among IDI and MDI. In 1-day gran-

ularity, the highest scores for these two categories belong to news regarding children losing their

healthcare (Oct. 2017) and jail sentence for Larry Nassar from Michigan state university (Jan 2018),

respectively. Among 3-day time frames, we notice an outlier with minimum burstiness among IDI

which relates to an advertisement by Samsung galaxy for discount (Nov). The maximum score

for the group also relates to the same topic while the maximum score of MDI is regarding the

100 refugees entering to US (Dec). The viral topic developed by the latter group among 7-day

time frames relates to Robert Mueller’s investigation of Paul Manafort’s financial investments (Feb).

Nonetheless, the hottest topic among regular users are lightness of Samsung galaxy (March). The

outlier with minimum popularity and high burstiness on left of figure relates to an update regarding

the stock market’s worst correction on Feb 3. Finally, among 21-day frames, we can notice the

Dr. Martin Luther King Jr. as the most viral topic among regular users (Jan) and NYC’s mayor

on terrorist suspect (Oct) among journals. Although the phone advertisement has received highest

popularities and scores among topics, it has the lowest burstiness among all topics and time frames.

This indicates that commercial product with a viral subject that receive high level of popularity and
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relatively lower burstiness might’ve been promoted for months. The detected topics above imply

propagation of political news through journals and development of more diverse subjects including

social events and tech news by interactive users.

Fig. 5.5 shows averaged values for all three metrics among the top 100 clustered topics in terms

of score among IDI and MDI. The averaged popularity values are higher for IDI on two middle time

frame granularities: 3 and 7-day frames. Also, the averaged burstiness is consistently higher for the

latter group while the averaged cluster size is higher for MDI except for 21-day time frames. The

smaller size and higher burstiness for most viral topics among others by the former group imply that

interactive users change topics more often and focus on more concise and diverse set of topics.

5.6.2 Viral Topics

Figure 5.6 visualizes significant clusters in terms of relative score (i.e. viralness) across time frames.

We can already notice the concentration of topics for IDI and MDI among middle (3 and 7-day)

and longer (21-day) time frames in order. In those figures, each rectangle shows a topic, darker

color represents higher score and rectangle height represents cluster size. I start with the most

noticeable layer of granularity: 21-day time frames. Among the MDI, the most viral topics on this

time frame are suspected terrorist act in NYC around late October, marriage of prince Harry on mid-

November, Michael Wolff’s book named Fire and Fury on late December and attorney general being

interviewed for Russian investigation on late January. Eight out of 10 most popular topics, one per

time frame, are political topics. The exceptions are Samsung advertisement in early December and

court hearings by victims of Larry Nassar in early February. Among IDI users, the most viral topics

in the latter time frame included an application advertisement, namely word correction application,

on September, Martin King Jr. on late January. In this respect, four topics out of the top ten hottest

topics related to social news where two topics related to technology and another two to lifestyle and

one to politics. Similarly, observations on 7 and 3-day time frames confirm that more diverse and



www.manaraa.com

134

less political topics are viral among interactive users.

5.6.3 Network Model of Topics

For a network model of clustered topics, I apply the similarity formula introduced in Sec. ?? to

calculate similarity-weights for edges between topics as vertices in the network. Although topics

are more populated in longer time frames, the total number of clustered topics are higher for shorter

windows. Then, the best approach to flexibly visualize the network fo clusters is a circular network

with topics belonging to the longer frames being closer to the center. To manage the complexity

of weight calculation among topics, I limit the similarity edges to hierarchal and temporal links.

By the former, I calculate similarity between a topic with other topics located on overlapping time

frames, i.e. its higher or lower time frames on different granularities. By the latter links, we imply

the similarity between a topic and other topics distinguished on the same granularity but different

and close time frames. For an instance of hierarchal similarity, a clustered topic on 3-day time

frame with center of 2018-02-01 has hierarchal links to topics on 1-day time frames of 01-31,

02-01 and 02-02, 7-day time frame of 02-03 and 21-day time frame of 02-10. For an instance of

temporal similarity, the same topic has weights to topics on 3-day frames centered around 01-26,

01-29, 02-04 and 02-07 (see Fig. 5.6). While the number of clustered topics for 210 days of

tweeting data are 2954 and 2511 in user with IDI and MDI, by using this method, we reduced the

number of weight calculations from (8.7, 6.3) million links to (32756, 24475) links for IDI and MDI.

Fig. 5.8a and 5.8b show hierarchal networks for MDI and IDI where each vertex is combination

of clustered topics in a frame and its size is proportional to sum of cluster sizes. The left figure

shows denser connection among nodes, particularly the connections with nodes on the 21-day

granularity. This observation implies that accounts with journalistic behavior focus on fewer topics

in comparison to accounts with interactive behavior which are visible across different granularities.

This is also consistent with the observations in Sec. 5.6.2. Fig. 5.9 and 5.10 show the temporal
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Fig. 5.7: Logarithmic probability distribution corresponding to calculated logarithmic weights of similarity among clustered
topics. Assuming scale-free distribution of weights: P (k) ⇡ k�� , we find � ⇡ 1.87.

similarities between consecutive topics where each circle contains all clustered topics at a time

frame. The number of visualized topics are limited according to its time frame: (4, 6, 8, 10) for

(1, 3, 7, 21)-day frames. At each frame, the topics are sorted based on their relative score as

the cluster with highest sore is closest to the inner circle. The network edges show the similarity

weights calculated using Eq. 5.8. In these figures, opposed to the hierarchal case, we observe

denser connection among clustered topics of IDI accounts.
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(a) MDI (b) IDI

Fig. 5.8: Hierarchal similarity between aggregated topics on different time frame granularities: (a) MDI: topic clusters among
the accounts with media-driven influence, (b) IDI: topic clusters across user network with interactive influence. Every node
shows a time frame where its size the sum of size of all clustered topics the its corresponding time frame.. The inner to outer
circles show the clustered topics on 21, 7, 3 and 1-day time frames. Data time increases clockwise from north between
2017-08-16 and 2018-03-13 corresponding to 210 days.

5.7 Discussion and Conclusion

In the networked model of topics in the previous section, a visual connection is established between

structural behavior of users and temporal model of viral topics and discourse on Twitter. In this

section, I visualize and analyze statistical metrics of topics for the distinguished classes of users

during this chapter.

5.7.1 Statistical Analysis

The complete topic networks with weights are still too complicated for the purpose of visual com-

parison between classified accounts. Fig. 5.7 shows the log-distribution of similarity weights among

clustered topics. Accordingly, I limit the visualized weights to similarity > 100. Further, I separate

the hierarchal weights from the temporal weights. Fig. 5.8 visualizes the first network where each
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Fig. 5.9: Temporal similarity between clustered topics on consecutive time frames for MDI. Every node shows a topic with its
cluster size. The inner to outer circles show the clustered topics on 21, 7, 3 and 1-day time frames. The line width between
two topics is proportionate to the calculated similarity between them. Data time increases clockwise from north between
2017-08-16 and 2018-03-13 corresponding to 210 days.

vertex represents the combination of all clustered topics in a time frame. The inner circle contains

topics on the time frame with least granularity and the outer circle contains those on daily time

frames. Assume that TF = {Ci} is a set of all clustered topics in a time frame, the weights of

edges in this network are calculated as sum of topic-similarity weights between two hierarchal time
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Fig. 5.10: Temporal similarity between clustered topics on consecutive time frames for IDI.

frames:

weight(TFi, TFj) =
X

Cv2TFi

X

Cw2TFj

similarity(Cv, Cw) (5.11)

Fig. 5.11 shows multiple network statistics across different granularities. Accordingly, the num-

ber of clustered topics are higher for users with IDI behavior. Nonetheless, in Fig.5.11b, the number

of temporal links with similarity > 100 shows higher weight among topics of MDI for lower granu-
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Fig. 5.11: Network statistics for IDI and MDI and different temporal granularities: (a) number of topics: the number of
clustered topics in the 210, 70, 30, and 10 possible 1, 3, 7 and 21-day time frames. Averaged number of clusters per time
frame are 9.2 and 7.8 for IDI and MDI. (b) similarity links: the number of temporal similarity links between topics with
similarity > 100. (c) avg similarity: the averaged temporal similarity between consecutive topics. (d) avg centrality: the
averaged centrality of vertices in the networks clustered topics and similarity links.

Fig. 5.12: Network statistics for IDI and MDI: (e) averaged cluster sizes: for number of words in clustered topics, (f) averaged
scores: for clustering score of detected clusters and viral topics, and (g) averaged consolidations: for the number and weight
of connections in each cluster.

larities. In the latter figure, we expect more links among topics of IDI accounts with higher number

of clustered topics but this observation suggests that more various topics are discussed among

these users. The averaged similarity among the temporal links in Fig.5.11c shows that consecutive

topics are more strongly similar among IDI accounts. This behavior suddenly changes for the least

granularity as the topics are more consistent for 21-day granularities. We observe similar trends

regarding the centrality of topics Fig.5.11d.

Fig. 5.12 shows a number of aggregated statistics. The number of stemwords, i.e. words, terms,

hashtags and compound words, per topic is slightly higher for IDI. In Fig.5.12f , averaged cluster

scores are also higher for those users. This implies that finding discussion topics are easier among
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interactive users. The next figure shows the averaged consolidation introduced by Eq. 5.9 and

indicates the number of links among the terms in a cluster, normalized by its size. According to

Fig.5.12h, the centrality of nodes is also higher for IDI which is counterintuitive given the higher or

comparable number of links among topics discussed by the second group. Finally, the averaged

temporal similarity is higher for interactive users while the averaged hierarchal similarity is higher

for MDI as we observed visually in Fig. 5.8, 5.9 and 5.10.

(a) hierarchical (b) temporal

Fig. 5.13: Similarity weight distribution for MDI and IDI: (a) hierarchical similarity-weights for clusters links with simil � 100
among topics and (b) temporal logarithmic-scaled similarity-weights for cluster links with simil  100 among topics.

The weight distribution of similarity metrics has lognormal distribution. The statistical analysis of

hierarchical connections among clustered topics shows significantly higher weights among devel-

oped topics by MDI than those by IDI although the frequency of inter-topic connections are higher

for the latter topics. To limit the frequency of hierarchical connections and avoid repetitive ones, a

threshold for similarity weight equal to 100 is used. In this respect, the frequency of vertical connec-

tions with similarity > 100 are 2166 versus 2675 while equivalent values for mean log-weights are

275.06 and 254.1 for those groups of users respectively. The results from t-test or show t-statistics

of 11.98 with p-value of 0.00054 for rejection of null-hypothesis that differentiates those groups of
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users.

For temporal model of viral topics, t-test results also show that difference in temporal connec-

tions among viral topics between the two distinguished groups of users is statistically significant.

However, the number of possible temporal connections is lower than hierarchical ones and distri-

bution is closer to a normal distribution. Then the t-test is performed without using similarity weight

threshold for selecting connections. The number of temporal connections among viral topics are

4309 versus 5380 and the equivalent values for mean of log-weights are 11.02 versus 9.77 respec-

tive to MDI and IDI. The results from t-test show F-statistics of 12.48 and p-value of 0.00041 for

rejection of the the null hypothesis. Fig. 5.13 shows distribution of similarity-weights for hierarchical

and temporal connections among viral (clustered) topics. The difference between MDI and IDI is

not as much visible as statistically significant.

In addition to above tests, I performed a two-way ANOVA test to distinguish the effect of temporal

time-frame on temporal model of topics. The independent variables in this test are labels (MDI and

IDI) and time frames (1, 3, 7, and 21 days). Table 5.2 shows results from this analysis were each of

the categorical variables are significantly related to connection weights but their interaction doesn’t

show similar effect.

Vars type sum-sq df f-statistic p-value
frame-sizes categorical 41.67 3 5.57 0.000809
user-labels categorical 32.04 1 12.86 0.000337

labels:frames categorical 4.39 3 0.58 0.623009
Residuals - 24118 9681 Nan Nan

Table 5.2: Statistical Analysis of Temporal Connections Among Topics

Another metric that can capture and distinguish a networked structural characteristics of viral

topics is centrality. Fig. 5.14 shows two metrics of centrality in a network of viral topics. For eigen-

centrality, regarded as a ranking measure, which assigns eigenvalues to nodes assuming that more

important nodes are connected to other important nodes. This measures magnifies the effect of
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(a) eigen-centrality (b) betweenness-centrality

Fig. 5.14: Topic centrality for MDI and IDI: (a) eigen-centrality and (b) betweenness-centrality of viral topics. In both box-
plots, only positive centralities are drawn when the number of distinct topics for MDI and IDI are (1190 vs 1801) and (995 vs
1163) and the number of clustered viral topics are 2496 and 2928 for the two user-groups respectively.

source topics with stronger similarity to other driven topics. The results of t-test shows the difference

between the two groups of users is significant with t-statistic of 19.2 and p-value of 0. Betweenness

centrality is another metric that captures importance of one topic in terms of being on the shortest

paths that connect other topics. This metric might not suit perfectly to a network of viral topics but

the results are consistent with eigen-centrality when viral topics achieve higher centrality values

among IDI. The t-test results for the latter metric also show statistically significant difference among

the two user-groups with t-statistic of 5.84 and p-value of 5.7e�09.

The results from analysis of centrality metrics might look contradictory to results from similar-

ity weights as the IDI obtains consistently lower similarity weights but higher centrality measures

but this observation is consistent with the hypothesis that more various topics are more discussed

among interactive users while fewer topics are generated and circulated by MDI users. The com-

parison of eigen-centrality distributions between MDI and IDI shows that both distributions have

heavy tail toward higher values which shows multiple topics with extremely higher eigen-centrality,
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i.e. influence on other topics.

5.7.2 Questions and Contributions

This chapter contributes: 1) a model of classifying accounts based on their activity on Twitter, 2) a

clustering method for analyzing topics based on popularity and burstiness of connections among

terms (term-pairs) and 3) a statistical model that finds the connection among the two models for

interactive model in future.

For the detailed research questions in Sec. 5.2.1, this chapter introduced an influence-base

analysis technique for evolution of content on social networks. For viral topics, a clustering tech-

nique was introduced to find viral topics using a network of term-pairs in the published documents

based on frequency (popularity) and expected frequency (burstiness) of term-pairs. The results

were able to capture real and viral news during the same time frame. The interactions are captured

in terms of publishing and distributing documents across Twitter and their effect is categorized into

active contribution (tweeting) and reactive contribution (retweeting, replying). A clustering technique

was introduced to find viral topics based on a network of term-pairs in the published documents. In

the analysis results, framework show that profiles of participants with different interactive behavior

show different effect on developed topics and content in terms of time-frame granularity, connected-

ness, duration, type, and diversity of viral topics. The topics are validated by matching and tracking

the archived news during the 210 days of data analysis. I further introduced a network model of

topics using cosine similarity formula and defined hierarchal and temporal similarity between top-

ics clustered on deferent granularities of time frame. The results distinguished the two behavioral

camps by their effect on development of topics.

The results show that the exogenous behavior of users is more limited in terms of developing

diverse topics while the endogenous behavior shows greater potential to develop new topics. In

addition, interactive behavior among users is more focused on social, lifestyle and technology with
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more consistency among topics in terms of their temporal consecutiveness. On the other hand,

media-driven topics are more focused on abstract, news-based and political topics on the lowest

granularity. Nonetheless, these accounts show higher level of consistency in terms of hierarchal

similarity among topics. The results from this research can be applied to design effective learning

and broadcasting systems that combine diffusion of messages in social networks and interactive

behavior of users. Future research shall develop comparative results of an Agent-based Social Sys-

tems (ABSS) simulation model based on the observations in this research to understand suspicious

and adversarial behavior of influential accounts.
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Chapter 6

Contributions and Discussions

The research questions in this thesis are: (RQ1) in Ch. 3 on “How to formulate a pricing and alloca-

tive mechanism that incentivizes self-centric components and improve the collective performance of

a federated engineering systems?”, (RQ2) in Ch. 4 on “How to formulate auction-based algorithms

to incentivize inter-federate exchange of resources and drive decentralized components toward bet-

ter collective metrics such as higher value and lower computational cost?” and (RQ3) is the final

research question explored in Ch. 5 on “How can exchange mechanisms for human resources and

information contribute to better collective metrics in interactive and social networks?”.

In this thesis, I formulated an allocation mechanism to solve the centralized and combinato-

rial problem of scheduling tasks and routing data in a federated network of satellite systems. An

achievement in Ch. 3 was modeling a MILP model based on multiple high level technical assump-

tions in communication and satellite systems, e.g. limited communication links, multiple federates,

distributed resources, and periodic topologies, and low level financial assumptions, e.g. strategic

bidding by federates, a bidding language by the auctioneer, utility function for federates with pri-

vate information, and processing tasks assuming a monetary value and an inter-federate cost. The

formulation for a pricing mechanism introduced in the same chapter considered estimation decen-

tralized objective functions by federates by the auctioneer and devised incentive-compatibility in

pricing by the auctioneer. In addition, the latter method addressed the issues with a stable op-
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erational equilibrium, e.g. Pareto-optimal results and Nash-equilibrium, using a value-maximizing

mechanism combined with a federated cost-minimizing approach. The final results using simula-

tion study in five different Pareto-optimal designs showed that the approach enhances values for all

participants.

For the next step, in Ch. 4, I generalized the operational model for a general topology of fed-

erated task processing elements, i.e. TNE. The new operational model had minimal constraints

on network topologies, opportunity cost of using resources by a federate, and number of task-

processing elements. Then, the network size was extended while more permutations of a fed-

erated topology was considered for simulation study. However, the auction language (bidding)

was extended toward two-sided bidding by participants, versus one-sided reverse-bidding in Ch. 3,

including resource owners (link bids) and users (path bids). A path bid by a resource user im-

plies an upper-bound for bids by resource owners in processing a task and delivering its data to

destinations. Ch. 4 also formulates multiple sealed-bid auctions including first-price reverse-price,

non-linear price-maximizing, and binary search for prices. The latter auctions include two auctions

with closed-form solution for prices. The online auction with closed form solution (ONA) maximizes

prices for each federate, biased toward the federates with lower bids, until final prices satisfy path

constrains imposed by path bids. This auction emulates a combinatorial version of VCG scheme in

the sense that as long as a solution is valid, the prices for any winner is maximized regardless of her

bid. The last algorithm with virtual closed-form pricing, VPA, uses the same logic and maximizes

prices on each path biased toward the lowest bids. Nonetheless, averaged prices of resources

shared by a federate is proposed as resource prices while the individual prices for each resource

is announced as prices to resources. Then, in VPA, prices for resource buyers and sellers are

unbalanced while the payment among the federates is balanced, called virtual pricing in this thesis.

The final research question addresses an exploratory investigation of interactive models in real-

world dynamic social networks. By an user model, a behavioral model of influential users based
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on the structural activities of users and by a collective model of a network, a model of emergent

topics and discourse is intended. Two main classes of influential users are distinguished based on

a statistical model of their activity on Twitter. The model is based on semi-supervised learning with

initial labeling of two classes of users. Nonetheless, a clustering model of users with multiple output

clusters confirmed that the two groups is the most significant distinction observed by the content

model. For a model of topics and discourse, I proposed a clustering model of networked words

and terms to detect viral topics in multiple granularities in time based on a networked model of

terms and words used across millions of documents published by most influential users on Twitter.

Multiple collective metrics are devised for statistical analysis of viral topics such as similarity metric,

network centrality, and relevance score of topics. The statistical model of users and network model

of topics show statistically significant connection between behavioral classes of users and network

characteristics of content in a social network.

6.1 Comparative Discussion

Numerical results show the proposed mechanism for pricing resources is effective as it compen-

sates for the adverse effects of strategic bidding on collective value and increases exchanging

resources in a federation. Although the pricing mechanism is different from those in federated

clouds in terms of operational model and objective function, our auctioneer achieves higher utility

and prices for federates and shared resources like a cloud broker (CB) in [173] where an inde-

pendent federate resembles a public provider (PP) in a multi-cloud system. Results also show

heterogeneous prices for resources can increase values for participants in a federation, consistent

with higher utility value and profit for bidders and resource providers using multiple auction mecha-

nisms in cloud systems [174,207]. In this thesis, resource providers both share and use resources

and results were simulated from thousands of time steps with adaptive bidders versus single-run

assessment and random bidding in the latter works. Finally, the independent and federated cases
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in the proposed mechanism is similar to the non-federated and non-splitting approaches investi-

gated by Rebai in [39] when results also match exact algorithm’s in terms of value for providers and

acceptance ratio of computational loads.

In applying auction-based algorithms, this thesis investigated collective value, dynamic alloca-

tion and pricing of resources, and behavioral convergence when results are consistent with and

adds to those suggested by mechanisms in literature. The results in [154] give insight to using an

incentivizing mechanism for distributed agents to declare their truthful resources where a perfor-

mance metrics is response time to requests and the mechanism finds optimal payments to agents.

In [155], a negotiation mechanism can increase the total utility and the speed of agreement in a

market-based cloud system. In the latter work, authors use heuristic and intuitive baselines to

compare results, assume known tasks and utility functions, and heuristic behavior by agents. An

and Lesser in [156] investigate an NP-complete allocation mechanism for routing in a network and

investigate the convergence ratio for a dynamic system with selfish and myopic participants. In a

decentralized case, social welfare is improved by up to 90% of a centralized solution where number

of participants, concurrency ratio, uncertainty, and number of routing paths have negative effects

on decentralized social utility ratio. Han et al. in [208] show that we have a tradeoff between local

performance and communication cost in task planning among distributed decision makers (DM)

with shared asset, compared to a centralized solution. The results of an auction-based mechanism

for resource allocation shows that iterative auction using VCG algorithm for allocating resources

among multiple players, with 2D bidding on demands and unit prices, results in fast converging

and monotonic increase of social welfare, decreasing bids and increasing demand for resources

by selfish players [160]. In these works, the authors either don’t consider the effect of topology

for networked elements, avoid dynamic resources such as communication links among agents, or

assume iterative and non-combinatorial resource allocation.
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6.2 Future Research

New forms of networked systems such as clouds, satellite systems, autonomous vehicles, robotic

missions, etc. call for more inclusive mechanism design for driving a collection of decentralized sys-

tems towards a collective goal. In this thesis, I approached modeling resource allocation in TNE and

investigated auction-based algorithms for incentivizing a collective behavior by decentralized enti-

ties. Future research shall investigate experimental results from allocative and pricing mechanisms

in combinatorial problems such as multi-source and multi-hop routing. The scalability of LP model

shall be addressed for bigger networks with thousands of elements such as internet of things (IoT).

Future models shall consider more sophisticated set of tasks and resource constraints, such as

collaborative tasks requiring a set of computational resources. Future works on federated networks

may investigate effects of adversarial behavior by an untruthful and strategic auctioneer, complexity

of the operational solution in time for scaling purposes, and efficient algorithms for combinatorial

pricing and resource allocation in a network.

For auction-based algorithms, high improvement is achievable through auction language, i.e. in-

formation exchange among elements, federates and the auctioneer. In addition, devising a decen-

tralized auctioneer increases the algorithmic issues associated with collective metrics and sharing

information while can significantly reduce the computational cost of the auctioneer.

For incentivizing mechanisms for information exchange in interactive social networks, the next

steps include developing an Agent-based Social Systems (ABSS) model for simulating effect of

micro-level behavior of agents on collective metrics in terms of developed topics. In the proposed

model in Ch. 5, similar to temporal model introduced in [209], I use an empirical twitter-follower

graph as a basis and consider three dimensions: 1) content (e.g. semantics), 2) social user activity

e.g. retweets, replies and tweets, and 3) time. For the first one, a similarity measure among

contents with minimum of 0 (for news at each time step), and 1 for retweets is defined. For the
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second one, an graph model of twitter users is used as a basis for observing the effect of social

connections and influence. In this model, each user finds the subject for next activity from users that

he follows. In other works, a social structure of user-follower affects the diffusion and propagation

of contents. Third, temporal parameters are models using news as new pieces of information

published by multiple sources in user network at each time step.

Three probabilities capture the relative weights of behavioral activities by a user:

• Tweet probability (pt): a relatively independent activity by a user based on information input

from the connected users or the pieces of news from an external platform system.

• Retweet probability (pr): a purely dependent activity in terms of distribution of a content

generated by other users. This activity leads to popularity of content among followers of the

distributor.

• Reply probability (pp): an engagement activity by a user that also leads to distribution (popu-

larity) of a concept among the followers of distributor and the concept generator.

The above parameters define the characteristics of a user in terms of being interactive (IDI) ver-

sus distributor (MDI) in terms of weights of tweets, replies and retweets in their behavior. Interactive

users engage more in distribution of contents and interaction with contents produced by other users

(retweet and replies) than publishing their own content independently. Another difference among

the three types of activities produced above is an assumed similarity of news pieces to existing

ones. By a retweet, I assume the maximum similarity which leads to pure increase of popularity

in the network. On the other hand, similarity of a tweet to existing ones is picked form a uniform

distribution: 0  sij  1. Then, a new tweet helps to change popularity of the concept according

to the defined similarity. A reply also increases the popularity of the original tweet except that it

doesn’t create a new topic. The latter intuition is driven from Twitter where replies are separated

from regular tweets and in general don’t receive same level of attention and feedback from other
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users, although they help to popularize another content.

The clustering model introduced in Sec.5.4 will be applied on topics generated from the simula-

tion study for different granularities of time 1. The future works on interactive mechanisms in social

networks shall address incentivizing mechanisms for driving collective behavior of users toward col-

lective metrics. For instance, tutoring mechanisms, blockchain of news sources, and guiding bots

can significantly incentivize spreading truthful versus fake content in interactive platforms such as

Twitter.

1Visualizations, definitions and explanations regarding the simulation study will be covered in the future publications out
of this chapter.
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Appendix A

Storage Penalty

Assume an element has available memory M , probability p for availability of new task (next time

step), and probability q for task delivery (next time step), and storage penalty for M = 1 equal to

SP1. To formulate the effect of additional storage (M = 2)1, consider four probable states at next

time step:

• new task (p) - new delivery path (q): storage state doesn’t change and (M = 2)

• no task (1� p)- no delivery path (1� q): storage state still doesn’t change and (M = 2)

• new task (p)- no delivery path (1� q): storage state changes to (M = 1)

• no task (1� p)- new delivery path (q): storage state changes to (M = 3)

For SP1, I expect:

SP2 = p(1� q)SP1 + pqSP2 + (1� p)(1� q)SP2 + (1� p)qSP3 (A.1)

where the SP3 is low value and close to zero (SP3 ⇡ 0) as the opportunity cost of one memory
1In orbital federated satellite model, maximum storage unit on each element is equal to the size of two tasks M = 2.
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unit when three are available M = 3 is assumed to be low, then:

SP2 =
p(1� q)

p+ q � 2pq
SP1

and assuming steady state model, p and q are close values p ⇡ q and:

SP2 ⇡
SP1

2

In the orbital model, more available tasks exist than paths when the model is saturated. I expect

p ⇡ q because if tasks are available but delivery paths don’t, this model doesn’t process some tasks

(without feasible path) and the presumed p decreases.
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Fig. A.1: SP states: state transition of storage penalty given initial state of M = 2 at current time step tn, which indicates
available storage of 2 in case of delivering existing task on memory (i.e. storage is 1 without releasing memory). The
state transition depends on probability of new task availability (p) and the probability of task delivery (q). The corresponding
equation is shown in Eq. A.1.
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Appendix B

Objective Functions

The operational model uses a temporal network elements in consecutive time steps to process

tasks and schedule delivery. In this section, we introduce notations and MILP formulation for the

operational models and objective functions.

B.1 Maximize Value

The value-maximizing objective function for a federation is defined as:

Jvalue(t) =
X

T2Ta

X

s2st

0

BB@
(e 2 Ed)⇥ V(T, t)

+ (e /2 Ed)⇥ T.penalty

1

CCAxresolve(T, e, s)

�

X

likt2L,T2Ta

X

s2st

[T.size⇥ ✏]xtrans(T, likt, s)

�

X

T2Ta

[T.size⇥ SPT.element(t)]xstore(T, t) (B.1)

where SPT.element(t) is the storage penalty for element owner of task T at time step t which was

defined by Eq.3.4. The intuition is that resolving a task affects the federation value through value

function of delivering it, or the penalty function of failure to deliver the task. In addition, data trans-

mission through a link affects the federation value with the network communication cost or the
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opportunity cost of storage penalty (i = k) defined by cost function ⇣ in Eq.3.4. The MILP model of

an operational run at time t subject to capacity and financial constraints is defined as:

find: xprocess(T, t), xtrans(T, likt, s),

xresolve(T, e, s), xstore(T, t), xread(T, t)

T 2 Ta, likt 2 L, s 2 st, t 2 t, e 2 E

maximize: Jvalue(t) (B.2)

subject to:

X

T2T,s2st

xtrans(T, l, s)  capacity(l), 8l 2 L (B.3)

X

T2T,t2t

T.size

0

BB@
xprocess(T, t)�

P
e2E

xresolve(T, e, t)

1

CCA  capacity(e) (B.4)

X

l2inlink(e,t)

xtrans(T, l, s)�
X

l2outlink(e)

xtrans(T, l, s+ 1)

� xresolve(T, e, s) = 0, 8T 2 T, s 2 st : e 6= T.element (B.5)

xprocess(T, t) + xread(T, t)�
X

s2st

xresolve(T, e, s)� xstore(T, t)

�

X

l2outlink(e,t),s2st

xtrans(T, l, s) = 0, 8T 2 T : e = T.element (B.6)

X

s2st

xresolve(T, e, s) = 1, if T.expiration <= t (B.7)
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where the inlink and outlink are the set of links into and out of an element:

inlink(ek, t) = {ljkt 2 L : ej 2 E}

outlink(ei, t) = {lidt 2 L : ed 2 E}

Constraint B.3 defines the limits on link capacity, Cons. B.4 defines the storage capacity of an

element, Cons. B.5 balances the inflow and outflow of data into and out of an element except for the

sources, Cons. B.6 is the net flow constraint for source elements, lastly, Cons. B.7 resolves expired

task to free up memory of expired data.

B.2 Minimize Cost

find: xtrans(T, likt, s), xresolve(T, e, s)

given: x@
read

(T, t), x@
store

(T, t), x@
process

(T, e, s)

T 2 T, likt 2 L, s 2 st, t 2 t, e 2 E

minimize:
X

likt2L

X

s2st

⇣(Ft(T ), likt)xtrans(T, likt, s) +

X

T2Ta

X

s2st

0

BB@
(e 2 Ed)V(T, t)

+ (e /2 Ed)T.penalty

1

CCAxresolve(T, e, s) (B.8)

subject to:

Constraints B.3, B.5, B.6, B.7

X

s2st,e2E

xresolve(T, e, s) =
X

s2st,e2E

x@
resolve

(T, e, s) (B.9)

where x@
store

(T, t), x@
read

(T, t) and x@
process

(T, t) are the calculated decisions from Eq.3.14. Cons. B.9

ensures that the tasks resolved at time step t using Eq.3.14 would also be resolved in above solu-
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tion, although, tasks may be delivered to different elements.
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Appendix C

Q-Learning

For adaptive bidding model, we apply a generic open-source q-learning module1. Nonetheless, we

need to resolve three compatibility issues between bidding behavior and the basic q-learning: 1.

temporal distance between actions and reward (task pick up and tasks delivery) 2. interdependency

between actions and rewards in consecutive times steps, 3. continuous action space in bidding

(cf 2 R). The first and second concerns are addressed in updating multiple Q-values given a

reward value. Regarding the state-action dimensionality, the larger the action space gets, the

smaller will be the probability of visiting the same state again [210]. Then, we define Gaussian

distance between states to update the Q-values. Assuming a state action pair as xi = (si, ai), the

learning parameter is:

↵ij =
↵

Ki

e
�s2ij

2�2
s

+
�a2

ij

2�2
a

where ↵ is the learning factor from q-learning (Eq.4.13), �sij = |sj � si| and �aij = |aj � ai| and

Ki is the normalizing factor that ensures the sum of all Q values are updated with ↵.
1https://gist.github.com/kastnerkyle/d127197dcfdd8fb888c2
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After receiving each reward Rt
0
, all Q-values will be updated according to their ↵ij :

Q(xt

ij
) Q(xt

ij
) + ↵ij [

Rxt

N
+ �Q(xt+1

ij
)�Q(xt

ij
)]

8Q(xt

ij
) : t > t0 ��t 8j 2 S

where �t represents the number of time steps after which the actions are uncoupled from rewards

(i.e. actions cannot affect further rewards), N is the total number of actions during �t.

Fig. C.1: Q-value update parameter (↵) with two dimensional gaussian update distribution for a sample point of
state(sector) = 4 and action(cost) = 0.4.
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[51] Jeroen Famaey, Steven Latré, Tim Wauters, and Filip De Turck. End-to-end resource management for federated
delivery of multimedia services. Journal of Network and Systems Management, 22(3):396–433, 2014.

[52] Brendan Jennings, Kevin Feeney, and Joel J Fleck. Managing federations and cooperative management. Journal of
Network and Systems Management, 22(3):297–301, 2014.

[53] Abbas Ehsanfar and Babak Heydari. An incentive-compatible scheme for electricity cooperatives: An axiomatic
approach. IEEE Transactions on Smart Grid, 2016.

[54] Paul T Grogan, Koki Ho, Alessandro Golkar, and Olivier L de Weck. Multi-actor value modeling for federated systems.
IEEE Systems Journal, 2016.

[55] Paul T Grogan and Olivier L de Weck. Interactive simulation games to assess federated satellite system concepts. In
Aerospace Conference, 2015 IEEE, pages 1–13. IEEE, 2015.

[56] Chunhung Richard Lin and Jain-Shing Liu. Qos routing in ad hoc wireless networks. IEEE Journal on selected areas
in communications, 17(8):1426–1438, 1999.

[57] Onn Shehory and Sarit Kraus. Methods for task allocation via agent coalition formation. Artificial intelligence, 101(1-
2):165–200, 1998.

[58] Archie C Chapman, Rosa Anna Micillo, Ramachandra Kota, and Nicholas R Jennings. Decentralised dynamic task
allocation: a practical game: theoretic approach. In Proceedings of The 8th International Conference on Autonomous
Agents and Multiagent Systems-Volume 2, pages 915–922. International Foundation for Autonomous Agents and
Multiagent Systems, 2009.

[59] Guofang Nan, Zhifei Mao, Mei Yu, Minqiang Li, Honggang Wang, and Yan Zhang. Stackelberg game for bandwidth
allocation in cloud-based wireless live-streaming social networks. IEEE Systems Journal, 8(1):256–267, 2014.

[60] Yannis A Korilis, Aurel A Lazar, and Ariel Orda. Achieving network optima using stackelberg routing strategies.
IEEE/ACM Transactions on Networking (TON), 5(1):161–173, 1997.

[61] Nguyen Cong Nguyen, Ping Wang, Dusit Niyato, Yonggang Wen, and Zhu Han. Resource management in cloud
networking using economic analysis and pricing models: a survey. IEEE Communications Surveys & Tutorials, 2017.

[62] Elliot Anshelevich, Anirban Dasgupta, Jon Kleinberg, Eva Tardos, Tom Wexler, and Tim Roughgarden. The price of
stability for network design with fair cost allocation. SIAM Journal on Computing, 38(4):1602–1623, 2008.

[63] Liping Fu, D Sun, and Laurence R Rilett. Heuristic shortest path algorithms for transportation applications: state of
the art. Computers & Operations Research, 33(11):3324–3343, 2006.

[64] Zhifang Yang, Haiwang Zhong, Qing Xia, Chongqing Kang, Tianen Chen, and Yan Li. A structural transmission cost
allocation scheme based on capacity usage identification. IEEE Transactions on Power Systems, 31(4):2876–2884,
2016.

[65] Lloyd S Shapley. A value for n-person games. Contributions to the Theory of Games, 2(28):307–317, 1953.

[66] Annick Laruelle and Federico Valenciano. Shapley-shubik and banzhaf indices revisited. Mathematics of operations
research, 26(1):89–104, 2001.

[67] Lena Mashayekhy, Mahyar Movahed Nejad, and Daniel Grosu. Cloud federations in the sky: Formation game and
mechanism. IEEE Transactions on Cloud Computing, 3(1):14–27, 2015.

[68] Ramasuri Narayanam and Yadati Narahari. A shapley value-based approach to discover influential nodes in social
networks. IEEE Transactions on Automation Science and Engineering, 8(1):130–147, 2011.

[69] Matthew O Jackson and Alison Watts. The evolution of social and economic networks. Journal of Economic Theory,
106(2):265–295, 2002.

[70] Lone Grønbæk Kronbak and Marko Lindroos. Sharing rules and stability in coalition games with externalities. Marine
Resource Economics, 22(2):137–154, 2007.

[71] Yang Zhang, Chonho Lee, Dusit Niyato, and Ping Wang. Auction approaches for resource allocation in wireless
systems: A survey. IEEE Communications surveys & tutorials, 15(3):1020–1041, 2013.
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